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Definition

An effect algebra is defined to be an algebraic system (E,0,1,®)
consisting of a set E, two special elements 0,1 € E called the zero and the

unit, and a partially defined binary operation & on E that satisfies the
following conditions for all p,q,r € E:

O [Commutative Law] If p & g is defined, then g & p is defined and
pPOg=qDp.
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following conditions for all p,q,r € E:
O [Commutative Law] If p & g is defined, then g & p is defined and
P& qg=qOp.
@ [Associative Law] If g @ r is defined and p @ (q @ r) is defined, then
p D q is defined, (p® q) ® r is defined, and pDd (g®r) = (pDq) D r.
© [Orthosupplementation Law] For every p € E there exists a unique
g € E such that p® q is defined and p® g = 1.

G. Bificzak, J.Kaleta Sharp and principal elements in effect algebra February, 2016 Brno 2/18



N
Definition

An effect algebra is defined to be an algebraic system (E,0,1,®)
consisting of a set E, two special elements 0,1 € E called the zero and the

unit, and a partially defined binary operation & on E that satisfies the
following conditions for all p,q,r € E:

O [Commutative Law] If p & g is defined, then g & p is defined and
pPOg=q®p.

@ [Associative Law] If g @ r is defined and p @ (q @ r) is defined, then
p D q is defined, (p® q) ® r is defined, and pDd (g®r) = (pDq) D r.

© [Orthosupplementation Law] For every p € E there exists a unique
g € E such that p® q is defined and p® g = 1.

Q [Zero-unit Law] If 1 @ p is defined, then p = 0.
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basic properties

If p,q € E, we say that p and g are orthogonal and write p L g iff p& g is

defined in E. If p,g € E and p® g = 1, we call g the orthosupplement of
p and write p’ = q.

G. Bificzak, J.Kaleta Sharp and principal elements in effect algebra February, 2016 Brno 3/18



basic properties

If p,q € E, we say that p and g are orthogonal and write p L g iff p& g is
defined in E. If p,g € E and p® g = 1, we call g the orthosupplement of
p and write p’ = q.

It is shown in [5] that the relation < defined for p,q € E by p < q iff

Jr € E with p® r = q is a partial order on E and 0 < p <1 holds for all
p € E. It is also shown that the mapping p — p’ is an order-reversing
involution and that g L p iff g < p’. Furtheremore, E satisfies the
following cancellation law: f p@® g < r @ q, then p <r.
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It is shown in [5] that the relation < defined for p,q € E by p < q iff

Jr € E with p® r = q is a partial order on E and 0 < p <1 holds for all
p € E. It is also shown that the mapping p — p’ is an order-reversing
involution and that g L p iff g < p’. Furtheremore, E satisfies the
following cancellation law: f p@® g < r @ q, then p <r.

An element a € E is sharp if aNad = 0.

We denote the set of sharp elements of E by Sg.

An element a € E is said to be principal iff for all p,g € E, p L. g and
p,g < a= p®qg < a We denote the set of principal elements of E by Pg.
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Technical tools

In order to characterize principal elements we need the following known
Theorem:

Theorem (1, Theorem 3.5 in 8)

Ifp,g€e E, p L g, and pV q exists in E, then p \ q exists in E,
pPAG<(pVaq) <(pAq)andp®q=(pAq)d(pVa).
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In order to characterize principal elements we need the following known
Theorem:

Theorem (1, Theorem 3.5 in 8)

Ifp,g€e E, p L g, and pV q exists in E, then p \ q exists in E,
pPAG<(pVaq) <(pAq)andp®q=(pAq)d(pVa).

Lemma (2)

Let (E,0,1,®) be an effect algebra. If x € Pg, t € E and t < x then
there exists t V x' in E and

tvx =t x.
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N
Proof

Suppose that x € Pg. Let t € E and t < x hence t L x’. We show that
t @ x’ is the join of t and x'.

Obviously t < t® x" and x’ < t® x’. Suppose that v € E, t < v and
x" < u then
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!
tlu (1)
and
/
u<x t<x. (2)
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N
Proof

Suppose that x € Pg. Let t € E and t < x hence t L x’. We show that
t @ x’ is the join of t and x'.
Obviously t < t® x" and x’ < t® x’. Suppose that v € E, t < v and
x" < u then
t L (1)

and
u<x t<x (2)

Now (1) and (2) implies t @ v’ < x since x € Pg. Hence x’ L (t ® u') and
by associativity x' L t and (X' @ t) L ¢/ thus t® x’ < uso t @ x' is the
smallest upper bound of the set {t,x'} and therefore t ® x' = t v x'. O
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de Morgan's law

It turns out that under some conditions every effect algebra satisfies the de
Morgan's law.

Lemma (3)

Let (E,0,1,®) be an effect algebra. If x,y € E and there exists xV y in E
then there exists x' Ay' in E and

X'Ny'=(xVy)

Similarly we obtain
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Morgan's law.

Lemma (3)

Let (E,0,1,®) be an effect algebra. If x,y € E and there exists xV y in E
then there exists x' Ay' in E and

X'Ny'=(xVy)

Similarly we obtain

Lemma (4)

Let (E,0,1,®) be an effect algebra. If x,y € E and there exists x Ay in E
then there exists x' V y' in E and

! ! !
XVy = (xAy)
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Principal elements

Theorem (5)

Let (E,0,1,®) be an effect algebra. Then

Pe ={x € E: x € Sg andVicet < x = t V x' exists in E}
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Proof

Suppose that x € Pg then x € Sg (see Lemma 3.3 in [8]). Let t € E and
t < x . Then there exists t V x" in E by Lemma (2)
Suppose that x € S¢ and

Vicet < x = tV x' exists in E.

(4)

We show that x € Pkg.

G. Bificzak, J.Kaleta Sharp and principal elements in effect algebra

February, 2016 Brno 8 /18



Proof

Suppose that x € Pg then x € Sg (see Lemma 3.3 in [8]). Let t € E and
t < x . Then there exists t V x" in E by Lemma (2)
Suppose that x € S¢ and

Vicet < x = tV x' exists in E. (4)

We show that x € Pkg.
Ifu,se E, u<x,s<xandul s then

unx =0
because: if y < x’ and y < u < x then y = 0 since x A x' = 0.

Moreover u < x so u V x’ exists by (4). By Theorem (1)

' ’ r (5) '
udx =(uAX)®d(uVvx)=uVx (6)
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Proof-cont.

By Lemma (3) we have

UAx=(uvx). (7)
Moreover s < o (since u L s) and s < x so s < u' A x. Hence by (6) and
(7) we have
s<UAx=(wVvxX)=(wox)

so s L (u@ x') and by associativity s ® u L x’ hence s ® v < x and
x € Pe. O
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-
Main Theorem
In the following theorem we prove that in every effect algebra E sharp and

principal elements coincide if and only if there exists in E join of every two
orthogonal elements such that one of them is sharp.

Theorem (6)
Let (E,0,1,®) be an effect algebra. Then Sg = Pg if and only if

Vixee(t L x" andx Ax' =0) = tV x' exists in E (8)
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Main Theorem

In the following theorem we prove that in every effect algebra E sharp and
principal elements coincide if and only if there exists in E join of every two
orthogonal elements such that one of them is sharp.

Theorem (6)
Let (E,0,1,®) be an effect algebra. Then Sg = Pg if and only if

Vixee(t L x" andx Ax' =0) = tV x' exists in E (8)

Proof.

Suppose that Sg = Pg. We show that (8) is satisfied.

Let x,t€ E, t L xX'and x Ax’ =0. Then t < x, x € Pg and by Theorem
(5) we know that t V x" exists in E.Suppose that condition (8) is fullfilled.
Obviously Pe C Sg (see Lemma 3.3 in [8]). We prove that Sg C Pg. Let
x € Sg. If t € E, t < x then t L x’ and by condition (8) t V x exists in E
hence x € Pg by Theorem (5). Thus Sg C PE. O
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Effect algebras closed under &

Lemma (7)

Let (E,0,1,®) be an effect algebra. If P is closed under @ (that is, if
x,y € Pe and x Ly, then x® y € Pg) then

V.yePe xLy=xXANKxdy)=y.
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Effect algebras closed under &

Lemma (7)

Let (E,0,1,®) be an effect algebra. If P is closed under @ (that is, if
x,y € Pe and x Ly, then x® y € Pg) then

V.yePe xLy=xXANKxdy)=y.

Proof.
Let x,y€ Peandx Ly. Theny <x"and y < x@® y so y is a lower
bound of x' and x @ y. Let t be a lower bound of x’ and x ® y. We show
that t < y. We know that t < x’ so t L. x. Moreover t < x & y and
x < x @ y hence

x@t<xqy

since x @ y € Pg. After using cancellation law we obtain t < y. Hence y
is the largest lower bound of x’ and x ®y so X' A (x® y) =y. O
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Effect algebras closed under é¢-cont.
Lemma (8)

Let (E,0,1,®) be an effect algebra. If for every x,y € Sg such that x L y
there exists x V y in E and

X'NxVy)=y, x@y=xVy (9)

then Sg is closed under @ (that is, if x,y € Sg and x L y, then
x@ye€ Sg)

G. Bificzak, J.Kaleta Sharp and principal elements in effect algebra February, 2016 Brno 12 / 18




-
Effect algebras closed under é¢-cont.
Lemma (8)

Let (E,0,1,®) be an effect algebra. If for every x,y € Sg such that x L y
there exists x V y in E and

X'NxVy)=y, x@y=xVy (9)

then Sg is closed under @ (that is, if x,y € Sg and x L y, then
x@ye€ Sg)

Proof.
Let x,y € Sg and x L y. By (9) we have

Lemma (3)

0 =y'Ay=y'An(XA(xVy)) (xVy) AlxVy)

— /
=(xey)rnixay),
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Effect algebras closed under b-main Theorem

In the following Theorem we show that if Sg = Pg then Sg = Pg is closed
under @ if and only if elements in Sg = Pg satisfy the orthomodular law.
It partially solves Open problems 3.2 and 3.3 in [9].

Theorem (9)

Let (E,0,1,®) be an effect algebra such that Sg = Pg. Then Sg = Pg is
closed under @ if and only if for every x,y € Sg we have

x<y=xVKXAy)=y.
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Proof

Suppose that Sg = Pg is closed under @. Let x,y € Sg and x < y then
x 1 y" and by Lemma (7) we have x’ A (x @ y') = y' since y' € Sg. It
follows that

Lemma (4)

y = xV(xay)

, Lemma (2)

xV(xVvy)

Lemma (4)

x V(X" Ny).
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N
Proof-cont.

Suppose that for every x,y € Sg we have
x<y=xV(x'Ay)=y (10).

We show that for every x,y € Sg such that x 1 y there exists x Vy in E
and

XANxVy)=y, x®y=xVy.

Let x,y € Sg and x L y. Then x <y’ and y' € Sg = Pk, so

xV(y') =xVyexistsin E and xVy = x® y by Lemma (2). Moreover
xV (X' Ay") =y by (10). Hence x' A (X' A y') = y by Lemma (3) and
x'"AN(xVy)=y by Lemma (4). Therefore Sg is closed under & by Lemma

(8).
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