

Centralisers in algebra and elsewhere

Mike Behrisch×

imes Institute of Discrete Mathematics and Geometry, Algebra Group, TU Wien

8th September 2016 • Trojanovice

Disclaimer

Today all my carrier sets A are finite and non-empty!

Disclaimer

Today all my carrier sets A are finite and non-empty!

Assume $A = \{0, \dots, k-1\}$ if it helps.

Apologies

I will bore

you.

Apologies

I will bore some of you.

Sit back, relax and

• structure $\langle G; \odot \rangle$ with a binary operation

• structure $\langle G; \odot \rangle$ with a binary operation (group, semigroup, ring, algebra...)

- structure $\langle G; \odot \rangle$ with a binary operation (group, semigroup, ring, algebra...)
- in general: not commutative, but some elements commute

- structure $\langle G; \odot \rangle$ with a binary operation (group, semigroup, ring, algebra...)
- in general: not commutative, but some elements commute
- binary relation: $x \perp y :\iff xy = yx$ (i.e. $x \odot y = y \odot x$)

- structure $\langle G; \odot \rangle$ with a binary operation (group, semigroup, ring, algebra...)
- in general: not commutative, but some elements commute
- binary relation: $x \perp y :\iff xy = yx$ (i.e. $x \odot y = y \odot x$)

Toy example $G = Dih(3)$								
$Dih(3) = \langle r, s \mid r^3 = s^2 = e, sr = r^{-1}s \rangle$								
r^0	r^0	r^1	r^2	r^0s	r^1s	r^2s		
r^0	r^0	r^1	r^2	r^0s	r^1s	r^2s		
r^1	r^1	r^2	r^0	r^1s	r^2s	r^0s		
r^2	r^2	r^0	r^1	r^2s	r^0s	r^1s		
r^0s	r^0s	r^2s	r^1s	r^0	r^2	r^1		
r^1s	r ¹ s	r^0s	r^2s	r^1	r^0	r^2		
r^2s	r ² s	r^1s	r^0s	r^2	r^1	r^0		

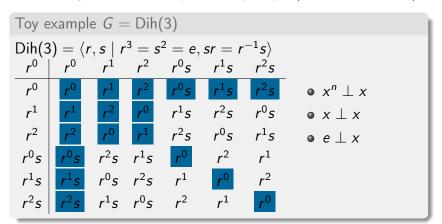
- structure $\langle G; \odot \rangle$ with a binary operation (group, semigroup, ring, algebra...)
- in general: ⊙ not commutative, but some elements commute
- binary relation: $x \perp y :\iff xy = yx$ (i.e. $x \odot y = y \odot x$)

Toy e	Toy example $G = Dih(3)$								
	$Dih(3) = \langle r, s \mid r^3 = s^2 = e, sr = r^{-1}s \rangle$								
r^0	r^0	r^1	r^2	r^0s	r^1s	r^2s			
r^0	r^0	r^1	r^2	r^0s	r^1s	r^2s	$\bullet x^n \perp x$		
r^1	r^1	r^2	r^0	r^1s	r^2s	r^0s			
r^2	r^2	r^0	r^1	r^2s	r^0s	r^1s			
r^0s	r^0s	r^2s	r^1s	r^0	r^2	r^1			
r^1s	r^1s	r^0s	r^2s	r^1	r^0	r^2			
r^2s	r^2s	r^1s	r^0s	r^2	r^1	r^0			

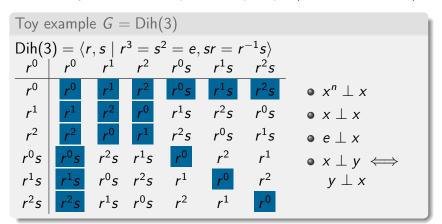
- structure $\langle G; \odot \rangle$ with a binary operation (group, semigroup, ring, algebra...)
- in general: not commutative, but some elements commute
- binary relation: $x \perp y :\iff xy = yx$ (i.e. $x \odot y = y \odot x$)

Toy e	Toy example $G = Dih(3)$								
$Dih(3) = \langle r, s \mid r^3 = s^2 = e, sr = r^{-1}s \rangle$									
r^0	r^0	r^1	r^2	r^0s	r^1s	r ² s			
r^0	r^0	r^1	r^2	r^0s	r^1s	r^2s	$\bullet x^n \perp x$		
					r^2s		x ⊥ x		
r^2	r^2	r^0	r^1	r^2s	r^0s	r^1s			
					r^2	r^1			
r^1s	r^1s	r^0s	r^2s	r^1	r^0	r^2			
r^2s	r^2s	r^1s	r^0s	r^2	r^1	r^0			

- structure $\langle G; \odot \rangle$ with a binary operation (group, semigroup, ring, algebra...)
- in general: not commutative, but some elements commute
- binary relation: $x \perp y :\iff xy = yx$ (i.e. $x \odot y = y \odot x$)



- structure $\langle G; \odot \rangle$ with a binary operation (group, semigroup, ring, algebra...)
- in general: ⊙ not commutative, but some elements commute
- binary relation: $x \perp y :\iff xy = yx$ (i.e. $x \odot y = y \odot x$)



• $\forall x \in G : e \perp x$

- $\forall x \in G : \mathbf{e} \perp \mathbf{x}$
- ullet is symmetric

- $\forall x \in G : \mathbf{e} \perp \mathbf{x}$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric

•
$$y \perp x$$
, $z \perp x \implies yz \perp x$
 $x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$ $xy = yx \iff y^{-1}x = xy^{-1}$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$ $xy = yx \iff y^{-1}x = xy^{-1}$

Centralisers

 $\langle G; \odot \rangle$ groupoid, $x \in G$, $F \subseteq G$.

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$ $xy = yx \iff y^{-1}x = xy^{-1}$

Centralisers

$$\langle G; \odot \rangle$$
 groupoid, $x \in G$, $F \subseteq G$.
 $x^* := \{ y \in G \mid y \perp x \}$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$ $xy = yx \iff y^{-1}x = xy^{-1}$

Centralisers

$$\langle G; \odot \rangle$$
 groupoid, $x \in G$, $F \subseteq G$.
 $x^* := \{ y \in G \mid y \perp x \}$
 $F^* := \bigcap_{x \in F} x^* = \{ y \in G \mid \forall x \in F : y \perp x \}$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$ $xy = yx \iff y^{-1}x = xy^{-1}$

Centralisers

$$\langle G; \odot \rangle$$
 groupoid, $x \in G$, $F \subseteq G$.
 $x^* := \{ y \in G \mid y \perp x \}$
 $F^* := \bigcap_{x \in F} x^* = \{ y \in G \mid \forall x \in F : y \perp x \}$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$ $xy = yx \iff y^{-1}x = xy^{-1}$

Centralisers

$$\langle G; \odot \rangle$$
 groupoid, $x \in G$, $F \subseteq G$.

$$\mathbf{x}^* := \{ \mathbf{y} \in \mathbf{G} \mid \mathbf{y} \perp \mathbf{x} \}$$

$$F^* := \bigcap_{x \in F} x^* = \{ y \in G \mid \forall x \in F : y \perp x \}$$

$$x^* < G$$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$ $xy = yx \iff y^{-1}x = xy^{-1}$

Centralisers

$$\langle G; \odot \rangle$$
 groupoid, $x \in G$, $F \subseteq G$.

$$\mathbf{x}^* := \{ y \in G \mid y \perp x \}$$

$$F^* := \bigcap_{x \in F} x^* = \{ y \in G \mid \forall x \in F : y \perp x \}$$

$$x^* \leq G$$
 $\langle x \rangle_G \subseteq x^*$

- $\forall x \in G : e \perp x$
- ⊥ is symmetric
- $y \perp x$, $z \perp x \implies yz \perp x$ x(yz) = (xy)z = (yx)z = y(xz) = y(zx) = (yz)x
- $x \perp x$, so $x^n \perp x$
- groups: $y \perp x \implies y^{-1} \perp x$ $xy = yx \iff y^{-1}x = xy^{-1}$

Centralisers

$$\langle G; \odot \rangle$$
 groupoid, $x \in G$, $F \subseteq G$.

$$\mathbf{x}^* := \{ y \in G \mid y \perp x \}$$

$$F^* := \bigcap_{x \in F} x^* = \{ y \in G \mid \forall x \in F : y \perp x \}$$

$$x^* < G$$

$$\langle x \rangle_G \subseteq x^*$$

$$x^* = x^{-1*}$$

•
$$e^* = Dih(3)$$

•
$$e^* = Dih(3)$$

•
$$r^* = r^{2^*} = \langle r \rangle_{\mathsf{Dih}(3)} = \{ r^0, r^1, r^2 \}$$

•
$$e^* = Dih(3)$$

•
$$r^* = r^{2^*} = \langle r \rangle_{\text{Dih}(3)} = \{r^0, r^1, r^2\}$$

•
$$r^i s^* = \langle r^i s \rangle_{\mathsf{Dih}(3)} = \{ r^0, r^i s \}$$

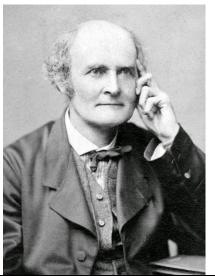
- $e^* = Dih(3)$
- $r^* = r^{2^*} = \langle r \rangle_{\text{Dih}(3)} = \{r^0, r^1, r^2\}$
- $r^i s^* = \langle r^i s \rangle_{\text{Dih}(3)} = \{ r^0, r^i s \}$
- by intersection: $\{r, s\}^* = \{r^0\}$

- $e^* = Dih(3)$
- $r^* = r^{2^*} = \langle r \rangle_{\text{Dih}(3)} = \{r^0, r^1, r^2\}$
- $r^i s^* = \langle r^i s \rangle_{\mathsf{Dih}(3)} = \{ r^0, r^i s \}$
- by intersection: $\{r,s\}^* = \{r^0\}$
- these are all possible subgroups,
 so no other centralisers (not a general phenomenon)

I like functions...

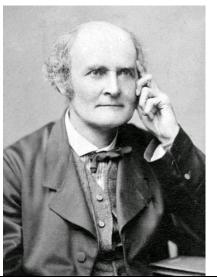
I like functions...

...but first quiz: who is this?



l like functions. . .

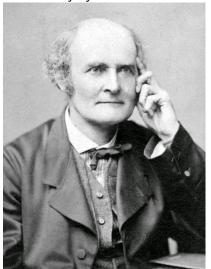
... but first quiz: who is this?



米田信夫

I like functions...

... but first quiz: who is this? Arthur Cayley



Nobuo Yoneda

米田信夫

l like functions...

Cayley (or Yoneda) says...

- every group is (isomorphic to) a permutation group
- every semigroup is a transformation semigroup
- every monoid is a transformation monoid
- every Menger algebra is a Menger algebra of functions
- every abstract clone is a concrete clone

I like functions...

Cayley (or Yoneda) says...

- every group is (isomorphic to) a permutation group
- every semigroup is a transformation semigroup
- every monoid is a transformation monoid
- every Menger algebra is a Menger algebra of functions
- every abstract clone is a concrete clone

```
M \le \langle T(A); \circ \rangle transformation monoid

f^* = \{g \in M \mid g \circ f = f \circ g\} (f \in M)

F^* = \{g \in M \mid \forall f \in F : g \circ f = f \circ g\} (F \subseteq M)

f \perp g \iff \forall x \in A : g(f(x)) = f(g(x)) (f, g \in M)
```

like higher-ary operations even more. . .

Finitary operations

- For $n \in \mathbb{N}_+$ a func $f: A^n \longrightarrow A$ is a *n*-ary operation on A
- $\mathcal{O}_A^{(n)} := A^{A^n}$ set of *n*-ary operations on A
- $\mathcal{O}_A := \bigcup_{n \in \mathbb{N}_+} \mathcal{O}_A^{(n)}$ set of all finitary operations on A

like higher-ary operations even more. . .

Finitary operations

- For $n \in \mathbb{N}_+$ a func $f : A^n \longrightarrow A$ is a *n*-ary operation on A
- $\mathcal{O}_A^{(n)} := A^{A^n}$ set of *n*-ary operations on A
- $\mathcal{O}_A := \bigcup_{n \in \mathbb{N}_+} \mathcal{O}_A^{(n)}$ set of all finitary operations on A

No nullary operations, so sad...

Commutation

For
$$n, m \in \mathbb{N}_+$$
, $\mathbf{f} \in \mathcal{O}_A^{(n)}$, $\mathbf{g} \in \mathcal{O}_A^{(m)}$, we define

$$f \perp g : \iff$$

Commutation

For
$$n,m\in\mathbb{N}_+$$
, $\mathbf{f}\in\mathcal{O}_A^{(n)}$, $\mathbf{g}\in\mathcal{O}_A^{(m)}$, we define

$$f \perp g :\iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m \ 1 \leq j \leq n}} \in A^{m \times n}$$
:

$$X_{1,1} \cdots X_{1,n}$$
 $\vdots \cdots \vdots$
 $X_{m,1} \cdots X_{m,n}$

Commutation

For
$$n,m\in\mathbb{N}_+$$
, $\mathbf{f}\in\mathcal{O}_A^{(n)}$, $\mathbf{g}\in\mathcal{O}_A^{(m)}$, we define

$$f \perp g :\iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m \ 1 \leq j \leq n}} \in A^{m \times n}$$
:

$$\begin{array}{cccc}
g & g \\
 & & \\
X_{1,1} \cdots & X_{1,n} \\
 & \vdots & \ddots & \vdots \\
X_{m,1} \cdots & X_{m,n} \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
C_1 \cdots & C_n
\end{array}$$

Commutation

For $n, m \in \mathbb{N}_+$, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$, we define

$$f \perp g :\iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m \ 1 \leq j \leq n}} \in A^{m \times n}$$
:

$$\begin{array}{cccc}
g & g \\
 & & \\
f(x_{1,1} \cdots x_{1,n}) = r_1 \\
 & \vdots & \ddots & \vdots \\
f(x_{m,1} \cdots x_{m,n}) = r_m \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Commutation

For $n, m \in \mathbb{N}_+$, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$, we define

$$f \perp g :\iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m \ 1 \leq j \leq n}} \in A^{m \times n}$$
:

Remark 1

Defining for $m, n \in \mathbb{N}_+$, $f \in \mathcal{O}_A^{(n)}$ and any $X = (x_{i,j})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in A^{m \times n}$

$$f(X) := \begin{pmatrix} f(X(1,\cdot)) \\ \vdots \\ f(X(m,\cdot)) \end{pmatrix} = \begin{pmatrix} f(x_{1,1}, \dots, x_{1,n}) \\ \vdots \\ f(x_{m,1}, \dots, x_{m,n}) \end{pmatrix}$$
(f row-wise)

Remark 1

Defining for $m, n \in \mathbb{N}_+$, $f \in \mathcal{O}_A^{(n)}$ and any $X = (x_{i,j})_{\substack{1 \le i \le m \\ 1 \le i \le n}} \in A^{m \times n}$

$$f(X) := \begin{pmatrix} f(X(1,\cdot)) \\ \vdots \\ f(X(m,\cdot)) \end{pmatrix} = \begin{pmatrix} f(x_{1,1}, \dots, x_{1,n}) \\ \vdots \\ f(x_{m,1}, \dots, x_{m,n}) \end{pmatrix}$$
(f row-wise)

we have for $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$:

$$f \perp g \iff \forall Y = (y_{i,j})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n} \colon g(f(Y)) = f(g(Y^T)).$$

```
For n, m \in \mathbb{N}_+, f \in \mathcal{O}_A^{(n)}, g \in \mathcal{O}_A^{(m)}:

f \perp g \iff \forall X \in A^{m \times n} : g(f(X)) = f(g(X^T)).
```

Remark 1

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$:
 $f \perp g \iff \forall X \in A^{m \times n} : g(f(X)) = f(g(X^T))$.

Corollary (since
$$(X^T)^T = X$$
)

For $f, g \in \mathcal{O}_A$: $f \perp g \iff g \perp f$.

Remark 1

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$:
 $f \perp g \iff \forall X \in A^{m \times n} : g(f(X)) = f(g(X^T)).$

Corollary (since
$$(X^T)^T = X$$
)

For $f, g \in \mathcal{O}_A$: $f \perp g \iff g \perp f$.

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$:
 $f \perp g \iff \forall X \in A^{m \times n}$: $f(c_1, \dots, c_n)$
 $= g(r_1, \dots, r_m)$.

Remark 1

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$:
 $f \perp g \iff \forall X \in A^{m \times n} : g(f(X)) = f(g(X^T)).$

Corollary (since $(X^T)^T = X$)

For $f, g \in \mathcal{O}_A$: $f \perp g \iff g \perp f$.

For
$$n, m \in \mathbb{N}_+$$
, $\mathbf{f} \in \mathcal{O}_A^{(n)}$, $\mathbf{g} \in \mathcal{O}_A^{(m)}$:
 $\mathbf{f} \perp \mathbf{g} \iff \forall X \in A^{m \times n}$: $\mathbf{f} (\mathbf{g} (X (\cdot, 1)), \dots, \mathbf{g} (X (\cdot, n)))$
 $= \mathbf{g} (\mathbf{f} (X (1, \cdot)), \dots, \mathbf{f} (X (m, \cdot)))$.

Remark 1

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$:
 $f \perp g \iff \forall X \in A^{m \times n} : g(f(X)) = f(g(X^T)).$

Corollary (since
$$(X^T)^T = X$$
)

For $f, g \in \mathcal{O}_A$: $f \perp g \iff g \perp f$.

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$:
 $f \perp g \iff \langle A; f, g \rangle \models f(g(X(\cdot, 1)), \dots, g(X(\cdot, n)))$
 $\approx g(f(X(1, \cdot)), \dots, f(X(1, \cdot)))$

Relations

Any $\varrho \subseteq A^m$

m-ary relation on *A*

Relations

Any
$$\varrho \subseteq A^m$$

m-ary relation on *A*

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $\varrho \subseteq A^m$

$$f \triangleright \varrho :\iff$$

Relations

Any
$$\varrho \subseteq A^m$$

m-ary relation on *A*

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $\varrho \subseteq A^m$

$$X_{1,1} \cdots X_{1,n}$$
 $\vdots \cdots \vdots$
 $X_{m,1} \cdots X_{m,n}$

Relations

Any $\varrho \subseteq A^m$

m-ary relation on *A*

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $\varrho \subseteq A^m$

$$f \triangleright \varrho :\iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in A^{m \times n}$$
:

$$\begin{array}{cccc} & & & & \\ & X_{1,1} & \cdots & X_{1,n} \\ \vdots & \ddots & \vdots \\ & X_{m,1} & \cdots & X_{m,n} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Relations

Any $\varrho \subseteq A^m$

m-ary relation on *A*

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $\varrho \subseteq A^m$

$$f \triangleright \varrho :\iff \forall X = (x_{i,j})_{\substack{1 \le i \le m \ 1 \le j \le n}} \in A^{m \times n}$$
:

$$f(x_{1,1} \cdots x_{1,n}) = r_1$$

$$\vdots \cdots \vdots \qquad \vdots$$

$$f(x_{m,1} \cdots x_{m,n}) = r_m$$

$$\vdots \cdots \vdots$$

Relations

Any $\varrho \subseteq A^m$

m-ary relation on *A*

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $\varrho \subseteq A^m$

$$f \triangleright \varrho :\iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m \ 1 \leq j \leq n}} \in A^{m \times n}$$
:

$$f(x_{1,1} \cdots x_{1,n}) = r_1$$

$$\vdots \cdots \vdots \vdots$$

$$f(x_{m,1} \cdots x_{m,n}) = r_m$$

$$\vdots \cdots \vdots$$

```
Graph of g \in \mathcal{O}_A^{(m)}
g^{\bullet} = \{ (x, g(x)) \mid x \in A^m \} \subseteq A^{m+1}
```

```
Graph of g \in \mathcal{O}_A^{(m)}
g^{\bullet} = \{ (x, g(x)) \mid x \in A^m \} \subseteq A^{m+1}
```

Preserving graphs

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$
 $f \triangleright g^{\bullet} : \iff$

```
Graph of g \in \mathcal{O}_A^{(m)} g^{\bullet} = \{ (x, g(x)) \mid x \in A^m \} \subseteq A^{m+1}
```

Preserving graphs

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$
 $f \triangleright g^{\bullet} :\iff \forall X = (x_{i,j})_{\substack{1 \le i \le m+1 \ 1 \le j \le n}} \in A^{(m+1) \times n}$:

$$X_{1,1} \cdots X_{1,n}$$
 $\vdots \cdots \vdots$
 $X_{m,1} \cdots X_{m,n}$
 $X_{m+1,1} \cdot X_{m+1,n}$

```
Graph of g \in \mathcal{O}_A^{(m)}
g^{\bullet} = \{ (x, g(x)) \mid x \in A^m \} \subseteq A^{m+1}
```

Preserving graphs

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$
 $f \triangleright g^{\bullet} :\iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m+1 \\ 1 \leq j \leq n}} \in A^{(m+1) \times n}$:

$$\vdots \quad \vdots \\ x_{m,1} \cdots x_{m,n} \\ x_{m+1,1} \cdot x_{m+1,n} \\ \bigcap \qquad \bigcap \\ g^{\bullet} \cdots g^{\bullet}$$

 $X_{1,1} \cdots X_{1,n}$

```
Graph of g \in \mathcal{O}_A^{(m)}
g^{\bullet} = \{ (x, g(x)) \mid x \in A^m \} \subseteq A^{m+1}
```

Preserving graphs

For
$$n, m \in \mathbb{N}_+$$
, $f \in \mathcal{O}_A^{(n)}$, $g \in \mathcal{O}_A^{(m)}$
 $f \triangleright g^{\bullet} :\iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m+1 \\ 1 \leq j \leq n}} \in A^{(m+1) \times n} :$

$$g \qquad g \qquad x_{1,1} \cdots x_{1,n} \\ \vdots \qquad \vdots \qquad \vdots \\ x_{m,1} \cdots x_{m,n} \\ = \qquad = \qquad c_1 \cdots c_n \\ \cap \qquad \cap \qquad \cap$$

```
Graph of g \in \mathcal{O}_A^{(m)}
g^{\bullet} = \{ (x, g(x)) \mid x \in A^m \} \subseteq A^{m+1}
```

Preserving graphs

```
For n, m \in \mathbb{N}_+, f \in \mathcal{O}_{\Delta}^{(n)}, g \in \mathcal{O}_{\Delta}^{(m)}
    f \triangleright g^{\bullet} : \iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m+1 \ 1 \leq j \leq n}} \in A^{(m+1) \times n}:
                                                                                      f(\overset{g}{\underset{1,1}{\times}}\cdots\overset{g}{\underset{1,n}{\times}}) = r_1
                                                                                              1 1 1
                                                                                      f(x_{m,1}\cdots x_{m,n}) = r_m
                                                                                      f(\begin{array}{ccc} = & = \\ c_1 & \cdots & c_n \end{array}) = y
```

```
Graph of g \in \mathcal{O}_{\mathbf{A}}^{(m)}
g^{\bullet} = \{ (x, g(x)) \mid x \in A^{m} \} \subseteq A^{m+1}
```

```
Preserving graphs
For n, m \in \mathbb{N}_+, f \in \mathcal{O}_{\Delta}^{(n)}, g \in \mathcal{O}_{\Delta}^{(m)}
   f \triangleright g^{\bullet} : \iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m+1 \ 1 \leq j \leq n}} \in A^{(m+1) \times n}:
                                                                              f(x_{1,1} \cdots x_{1,n}) = r_1
                                                                                     : . : :
                                                                              f(x_{m,1}\cdots x_{m,n}) = r_m
                                                                              f(\begin{array}{ccc} = & = \\ c_1 & \cdots & c_n \end{array}) = y

\bigcap_{g^{\bullet}} \cdots \bigcap_{g^{\bullet}} \Rightarrow g^{\bullet}
```

```
Graph of g \in \mathcal{O}_{\mathbf{A}}^{(m)}
g^{\bullet} = \{ (x, g(x)) \mid x \in A^{m} \} \subseteq A^{m+1}
```

Preserving graphs

```
For n, m \in \mathbb{N}_+, f \in \mathcal{O}_{\Delta}^{(n)}, g \in \mathcal{O}_{\Delta}^{(m)}
    f \triangleright g^{\bullet} : \iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m+1 \ 1 \leq j \leq n}} \in A^{(m+1) \times n}:
                                                                                                     f(\stackrel{g}{x_{1,1}}\cdots\stackrel{g}{x_{1,n}})=\stackrel{g}{r_1}
                                                                                                              : . : :
                                                                                                    f(\underbrace{x_{m,1}\cdots x_{m,n}}_{=}) = \underbrace{r_m}_{=}
f(\underbrace{c_1 \cdots c_n}_{=}) = \underbrace{y}
```

```
Graph of g \in \mathcal{O}_{\mathbf{A}}^{(m)}
g^{\bullet} = \{ (x, g(x)) \mid x \in A^{m} \} \subseteq A^{m+1}
```

Preserving graphs

```
For n, m \in \mathbb{N}_+, f \in \mathcal{O}_{\Delta}^{(n)}, g \in \mathcal{O}_{\Delta}^{(m)}
    f \triangleright g^{\bullet} : \iff \forall X = (x_{i,j})_{\substack{1 \leq i \leq m+1 \ 1 \leq j \leq n}} \in A^{(m+1) \times n}:
                                                                                                f(\stackrel{g}{x_{1,1}}\cdots\stackrel{g}{x_{1,n}})=\stackrel{g}{r_1}
                                                                                                         : . : :
                                                                                                f(\underbrace{x_{m,1}\cdots x_{m,n}}_{=}) = \underbrace{r_m}_{=}
f(\underbrace{c_1 \cdots c_n}_{=}) = \underbrace{y}
                            \iff f \perp g
```

Galois connections

Pol - Inv Galois correspondence

For $F \subseteq \mathcal{O}_A$ (operations) and $Q \subseteq \mathcal{R}_A$ (relations) we put

$$\begin{array}{l} \mathsf{Pol}_A \ Q := \{ f \in \mathcal{O}_A \mid \forall \varrho \in Q \colon f \rhd \varrho \} & (\mathsf{polymorphisms} \ \mathsf{of} \ Q) \\ \mathsf{Inv}_A \ F := \{ \varrho \in \mathcal{R}_A \mid \forall f \in F \colon f \rhd \varrho \} & (\mathsf{invariants} \ \mathsf{of} \ F) \end{array}$$

Galois connections

Pol - Inv Galois correspondence

For $F \subseteq \mathcal{O}_A$ (operations) and $Q \subseteq \mathcal{R}_A$ (relations) we put

$$\begin{array}{l} \mathsf{Pol}_A \ Q := \{ f \in \mathcal{O}_A \mid \forall \varrho \in Q \colon f \rhd \varrho \} & \text{(polymorphisms of } Q \text{)} \\ \mathsf{Inv}_A \ F := \{ \varrho \in \mathcal{R}_A \mid \forall f \in F \colon f \rhd \varrho \} & \text{(invariants of } F \text{)} \end{array}$$

 $Pol_A Inv_A F$ clone gen. by F (closure: composition, projs) $Inv_A Pol_A Q$ relational clone gen by Q (closure: pp-definitions)

Galois connections

Pol - Inv Galois correspondence

For $F \subseteq \mathcal{O}_A$ (operations) and $Q \subseteq \mathcal{R}_A$ (relations) we put

$$\begin{array}{l} \mathsf{Pol}_A \ Q := \{ f \in \mathcal{O}_A \mid \forall \varrho \in Q \colon f \rhd \varrho \} & \text{(polymorphisms of } Q \text{)} \\ \mathsf{Inv}_A \ F := \{ \varrho \in \mathcal{R}_A \mid \forall f \in F \colon f \rhd \varrho \} & \text{(invariants of } F \text{)} \end{array}$$

 $Pol_A Inv_A F$ clone gen. by F (closure: composition, projs) $Inv_A Pol_A Q$ relational clone gen by Q (closure: pp-definitions)

Centraliser Galois correspondence

For $F \subseteq \mathcal{O}_A$ we put

$$F^* := \{ g \in \mathcal{O}_A \mid \forall f \in F \colon g \perp f \}$$
 (centraliser of F)

Galois connections

Pol - Inv Galois correspondence

For $F \subseteq \mathcal{O}_A$ (operations) and $Q \subseteq \mathcal{R}_A$ (relations) we put

$$\begin{array}{l} \mathsf{Pol}_A \ Q := \{ f \in \mathcal{O}_A \ | \ \forall \varrho \in Q \colon f \rhd \varrho \} \ \ \text{(polymorphisms of } Q \text{)} \\ \mathsf{Inv}_A \ F := \{ \varrho \in \mathcal{R}_A \ | \ \forall f \in F \colon f \rhd \varrho \} \end{array} \qquad \text{(invariants of } F \text{)} \end{array}$$

 $Pol_A Inv_A F$ clone gen. by F (closure: composition, projs) $Inv_A Pol_A Q$ relational clone gen by Q (closure: pp-definitions)

Centraliser Galois correspondence

For $F \subseteq \mathcal{O}_A$ we put

$$F^* := \{ g \in \mathcal{O}_A \mid \forall f \in F \colon g \perp f \}$$
 (centraliser of F)

 F^{**} bicentraliser of F (closure: (clone +) pp-definitions)

Centralisers & bicentralisers

For
$$F \subseteq \mathcal{O}_A$$
 we have

$$(F^{\bullet} := \{f^{\bullet} \mid f \in F\})$$

$$F^* = \operatorname{Pol}_A F^{\bullet}$$

(centralisers are clones!)

Centralisers & bicentralisers

For
$$F \subseteq \mathcal{O}_A$$
 we have

$$(F^{\bullet} := \{ f^{\bullet} \mid f \in F \})$$

$$F^* = \operatorname{Pol}_A F^{\bullet}$$
$$= \{ g \in \mathcal{O}_A \mid g^{\bullet} \in \operatorname{Inv}_A F \}$$

(centralisers are clones!)

Centralisers & bicentralisers

For
$$F \subseteq \mathcal{O}_A$$
 we have $(F^{\bullet} := \{f^{\bullet} \mid f \in F\})$

$$F^* = \operatorname{Pol}_A F^{\bullet} \qquad \text{(centralisers are clones!)}$$

$$= \{g \in \mathcal{O}_A \mid g^{\bullet} \in \operatorname{Inv}_A F\}$$

$$F^{**} = \operatorname{Pol}_A F^{*\bullet} = \operatorname{Pol}_A (\mathcal{O}_A^{\bullet} \cap \operatorname{Inv}_A F)$$

Centralisers & bicentralisers

For
$$F \subseteq \mathcal{O}_A$$
 we have $(F^{\bullet} := \{f^{\bullet} \mid f \in F\})$

$$F^* = \operatorname{Pol}_A F^{\bullet} \qquad \text{(centralisers are clones!)}$$

$$= \{g \in \mathcal{O}_A \mid g^{\bullet} \in \operatorname{Inv}_A F\}$$

$$F^{**} = \operatorname{Pol}_A F^{*\bullet} = \operatorname{Pol}_A (\mathcal{O}_A^{\bullet} \cap \operatorname{Inv}_A F)$$

$$= \{g \in \mathcal{O}_A \mid g^{\bullet} \in \operatorname{Inv}_A F^*\} = \{g \in \mathcal{O}_A \mid g^{\bullet} \in \operatorname{Inv}_A \operatorname{Pol}_A F^{\bullet}\}$$

Centralisers & bicentralisers

For
$$F \subseteq \mathcal{O}_A$$
 we have $(F^{\bullet} := \{f^{\bullet} \mid f \in F\})$

$$F^* = \operatorname{Pol}_A F^{\bullet} \qquad \text{(centralisers are clones!)}$$

$$= \{g \in \mathcal{O}_A \mid g^{\bullet} \in \operatorname{Inv}_A F\}$$

$$F^{**} = \operatorname{Pol}_A F^{*\bullet} = \operatorname{Pol}_A (\mathcal{O}_A^{\bullet} \cap \operatorname{Inv}_A F)$$

$$= \{g \in \mathcal{O}_A \mid g^{\bullet} \in \operatorname{Inv}_A F^*\} = \{g \in \mathcal{O}_A \mid g^{\bullet} \in \operatorname{Inv}_A \operatorname{Pol}_A F^{\bullet}\}$$

Complete lattices

 \mathcal{L}_A clones $\mathcal{C}_A \subseteq \mathcal{L}_A$ centraliser clones (\bigwedge -subsemilattice)

Knowledge about these lattices

$$|A| = 2$$

 $|\mathcal{L}_A| = \aleph_0$
(E. L. Post, 1921/1941)

$$|A| = 2$$
$$|C_A| = 25$$

$$|{\cal C}_A|=25$$

(А.В. Кузнецов, 1977; et.al.)

$$|A| \ge 3$$

$$|\mathcal{L}_{A}| = 2^{\aleph_{0}}$$
 (Ю. И. Янов / А. А. Мучник, 1959)

$$|A|=3$$

 $|A| < \aleph_0$

$$|\mathcal{C}_A|=2986$$
 (А. Ф. Данильченко, 1974–79)

(I. G. Rosenberg, 1970,1986)

$$|A| \ge 3$$
 minimal and maximal clones $|A| < \aleph_0$ $|C_A| < \aleph_0$

(W. Harnau, 1974-76; I. G. Rosenberg, H. Machida) We know the basics about centralisers in algebra...

We know the basics about centralisers in algebra...

... now lets move on to "elsewhere".

The algebraist's take on CSP

 Γ a finite relational signature Γ a finite relational structure of signature Γ (template)

 $CSP(\underline{T})$...a decision problem

Instance: V of signature Γ Question: Hom $(V, T) \neq \emptyset$?

The algebraist's take on CSP

 Γ a finite relational signature Γ a finite relational structure of signature Γ (template)

$CSP(\underline{T})...$ a decision problem

Instance: V of signature Γ Question: Hom $(V, T) \neq \emptyset$?

Computer Scientists have a different perspective on $\mathsf{CSP}(\underline{\mathsf{T}})$

Instance: $\mathbf{V} = \left\langle V; \left(R^{\mathbf{V}}_{\sim} \right)_{R \in \Gamma} \right\rangle \leftrightarrow \varphi := \bigwedge_{R \in \Gamma} \bigwedge_{\mathbf{v} \in R^{\mathbf{V}}_{\sim}} R(\mathbf{v})$

Question: $\exists s : V \longrightarrow T : (\underline{T}, s) \models \varphi$?

The algebraist's take on CSP

 Γ a finite relational signature Γ a finite relational structure of signature Γ (template)

CSP(T)...a decision problem

Instance: \bigvee of signature Γ Question: Hom $(V, T) \neq \emptyset$?

Computer Scientists have a different perspective on $\mathsf{CSP}(\mathsf{T})$

Instance: $\mathbf{V} = \left\langle V; \left(R^{\mathbf{V}} \right)_{R \in \Gamma} \right\rangle \leftrightarrow \varphi := \bigwedge_{R \in \Gamma} \bigwedge_{\mathbf{v} \in R^{\mathbf{V}}} R(\mathbf{v})$ Question: $\exists s \colon V \longrightarrow T \colon (\mathbf{T}, s) \models \varphi$?

Instance: $\mathbf{V} = \left\langle V; \left(R^{\mathbf{V}} \right)_{R \in \Gamma} \right\rangle \leftrightarrow \psi := (\exists v)_{v \in V} \bigwedge_{R \in \Gamma} \bigwedge_{\mathbf{v} \in R^{\mathbf{V}}} R(\mathbf{v})$ Question: $\mathbf{T} \models \psi$, i.e., $\psi \in \mathsf{pp-Th}(\mathbf{T})$?

$$\underline{\mathbf{T}} = \left\langle \left\{0, 1\right\}; R^{\mathbf{T}}_{\sim}, S^{\mathbf{T}}_{\sim} \right\rangle; \ R^{\mathbf{T}}_{\sim} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \ S^{\mathbf{T}}_{\sim} = \leq_{2}$$

$$\underline{\mathbf{T}} = \left\langle \left\{ 0, 1 \right\}; R^{\mathbf{T}}_{\sim}, S^{\mathbf{T}}_{\sim} \right\rangle; R^{\mathbf{T}}_{\sim} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} S^{\mathbf{T}}_{\sim} = \leq_{2}$$

One instance, three perspectives

11
$$\mathbf{V} = \langle \{0, 1, 2\}; R^{\mathbf{V}}, S^{\mathbf{V}} \rangle$$

$$R^{\mathbf{V}} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \right\}, S^{\mathbf{V}} = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}$$

Q1
$$\exists h \in \text{Hom}(V, T)$$
?

$$\underline{\mathbf{T}} = \left\langle \left\{ 0, 1 \right\}; R^{\mathbf{T}}_{\sim}, S^{\mathbf{T}}_{\sim} \right\rangle; R^{\mathbf{T}}_{\sim} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} S^{\mathbf{T}}_{\sim} = \leq_{2}$$

One instance, three perspectives

11
$$\underline{\mathbf{V}} = \langle \{0, 1, 2\}; R^{\underline{\mathbf{V}}}, S^{\underline{\mathbf{V}}} \rangle$$

$$R^{\underline{\mathbf{V}}} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \right\}, S^{\underline{\mathbf{V}}} = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}$$

Q1 $\exists h \in \text{Hom}(V, T)$?

12
$$\varphi = R(x_0, x_1, x_1) \wedge R(x_2, x_0, x_1) \wedge R(x_2, x_2, x_0) \wedge S(x_0, x_2)$$

Q2
$$\exists h \colon V \longrightarrow T \colon (\mathbf{T}, h) \models \varphi$$
?

$$\underline{\mathbf{T}} = \left\langle \left\{ 0, 1 \right\}; R^{\mathbf{T}}_{\sim}, S^{\mathbf{T}}_{\sim} \right\rangle; R^{\mathbf{T}}_{\sim} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} S^{\mathbf{T}}_{\sim} = \leq_{2}$$

One instance, three perspectives

11
$$\underline{\mathbf{V}} = \langle \{0, 1, 2\}; R^{\underline{\mathbf{V}}}, S^{\underline{\mathbf{V}}} \rangle$$

$$R^{\underline{\mathbf{V}}} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \right\}, S^{\underline{\mathbf{V}}} = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}$$

Q1
$$\exists h \in \text{Hom}(V, T)$$
?

12
$$\varphi = R(x_0, x_1, x_1) \wedge R(x_2, x_0, x_1) \wedge R(x_2, x_2, x_0) \wedge S(x_0, x_2)$$

Q2
$$\exists h: V \longrightarrow T: (\mathbf{T}, h) \models \varphi$$
?

13
$$\psi = \exists x_0 \exists x_1 \exists x_2 \colon \varphi$$

Q3
$$\psi \in pp-Th(T)$$
?

Connection to clones

$$\mathbf{\underline{T}}_1 = \langle T; Q_1 \rangle, \ \mathbf{\underline{T}}_2 = \langle T; Q_2 \rangle$$

templates

pp-definable templates

$$\begin{array}{l} Q_1 \subseteq \mathsf{Inv}_{\mathcal{T}} \, \mathsf{Pol}_{\mathcal{T}} \, Q_2 \implies \mathsf{CSP} \left(\underbrace{\mathsf{T}}_1 \right) \leq_{\mathsf{m}} \mathsf{CSP} \left(\underbrace{\mathsf{T}}_2 \right) \\ \mathsf{Pol}_{\mathcal{T}} \, Q_1 \supseteq \mathsf{Pol}_{\mathcal{T}} \, Q_2 \implies \mathsf{CSP} \left(\underbrace{\mathsf{T}}_1 \right) \leq_{\mathsf{m}} \mathsf{CSP} \left(\underbrace{\mathsf{T}}_2 \right) \end{array}$$

Connection to clones

$$\mathbf{\underline{T}}_1 = \langle T; Q_1 \rangle, \ \mathbf{\underline{T}}_2 = \langle T; Q_2 \rangle$$

templates

pp-definable templates

$$\begin{array}{l} Q_1 \subseteq \mathsf{Inv}_{\mathcal{T}} \, \mathsf{Pol}_{\mathcal{T}} \, Q_2 \implies \mathsf{CSP} \left(\underbrace{\mathsf{T}}_1 \right) \leq_{\mathsf{m}} \mathsf{CSP} \left(\underbrace{\mathsf{T}}_2 \right) \\ \mathsf{Pol}_{\mathcal{T}} \, Q_1 \supseteq \mathsf{Pol}_{\mathcal{T}} \, Q_2 \implies \mathsf{CSP} \left(\underbrace{\mathsf{T}}_1 \right) \leq_{\mathsf{m}} \mathsf{CSP} \left(\underbrace{\mathsf{T}}_2 \right) \end{array}$$

Reason: substitute pp-definitions (Jeavons, 1998)

$$\exists \mathbf{x} \bigwedge_{i} R_{i}(\mathbf{x}_{i}) \iff \exists \mathbf{x} \bigwedge_{i} \exists \mathbf{y}_{i} \bigwedge_{j(i)} S_{j(i)}((\mathbf{x}_{i}, \mathbf{y}_{i}) \circ \alpha_{j(i)})$$
$$\iff \exists \mathbf{x} \mathbf{y} \bigwedge_{\ell} S_{\ell}((\mathbf{x} \mathbf{y}) \circ \alpha_{\ell})$$

Connection to clones

$$\mathbf{\underline{T}}_1 = \langle T; Q_1 \rangle, \ \mathbf{\underline{T}}_2 = \langle T; Q_2 \rangle$$

templates

pp-definable templates

$$\begin{array}{l} Q_1 \subseteq \mathsf{Inv}_{\mathcal{T}} \, \mathsf{Pol}_{\mathcal{T}} \, Q_2 \implies \mathsf{CSP} \left(\widecheck{\mathsf{T}}_1 \right) \leq_{\mathsf{m}} \mathsf{CSP} \left(\widecheck{\mathsf{T}}_2 \right) \\ \mathsf{Pol}_{\mathcal{T}} \, Q_1 \supseteq \mathsf{Pol}_{\mathcal{T}} \, Q_2 \implies \mathsf{CSP} \left(\widecheck{\mathsf{T}}_1 \right) \leq_{\mathsf{m}} \mathsf{CSP} \left(\widecheck{\mathsf{T}}_2 \right) \end{array}$$

Reason: substitute pp-definitions (Jeavons, 1998)

$$\exists x \bigwedge_{i} R_{i}(x_{i}) \iff \exists x \bigwedge_{i} \exists y_{i} \bigwedge_{j(i)} S_{j(i)}((x_{i}, y_{i}) \circ \alpha_{j(i)})$$
$$\iff \exists x y \bigwedge_{\ell} S_{\ell}((x y) \circ \alpha_{\ell})$$

$$\operatorname{Pol}_{\mathcal{T}} Q_1 = \operatorname{Pol}_{\mathcal{T}} Q_2 \implies \operatorname{CSP}\left(\underbrace{\mathsf{T}}_{1}\right) \equiv_{\mathsf{m}} \operatorname{CSP}\left(\underbrace{\mathsf{T}}_{2}\right)$$

CSP dichotomy conjecture

Fix a CSP template $\overline{\mathbf{T}}$.

Time complexity

CSP(T) is always in NP, some CSP's are in P.

CSP dichotomy conjecture

Fix a CSP template $\overline{\mathbf{T}}$.

Time complexity

 $CSP(\underline{T})$ is always in NP, some CSP's are in P.

CSP dichotomy conjecture (Feder/Vardi, 1998)

Schaefer, 1978: $|T| = 2 \Rightarrow \text{CSP}(T)$ in P xor NP-complete.

Conjecture: This extends to all finite domains.

CSP dichotomy conjecture

Fix a CSP template \mathbf{T} .

Time complexity

CSP(T) is always in NP, some CSP's are in P.

CSP dichotomy conjecture (Feder/Vardi, 1998)

Schaefer, 1978: $|T| = 2 \Rightarrow \mathsf{CSP}\left(\mathsf{T}\right)$ in P xor NP-complete.

Conjecture: This extends to all finite domains.

CSP dichotomy conjecture holds for...

|T| = 2 Schaefer, 1978

|T| = 3 Bulatov, 2006

|T| = 4 Marković et. al., 2011–12

 $5 \le |T| \le 7$ Wyk, 2016

Γ a finite algebra of finite signature

HomAlg(T) Feder/Madelaine/Stewart, 2004

Instance: \boldsymbol{A} of the same signature as \boldsymbol{T}

Question: Hom $(A, T) \neq \emptyset$?

Т

a finite algebra of finite signature

 $\mathsf{HomAlg}(\mathsf{T})$

Feder/Madelaine/Stewart, 2004

Instance: A of the same signature as T

Question: Hom $(A, T) \neq \emptyset$?

Lemma for \mathbf{G} , \mathbf{H} with 1 bin rel

FMS

 $\operatorname{Hom}\left(\mathbf{G},\mathbf{H}\right)\neq\emptyset\iff\operatorname{Hom}\left(\lambda_{2}\left(\mathbf{G}\right),\lambda_{2}\left(\mathbf{H}\right)\right)\neq\emptyset$

Т

a finite algebra of finite signature

 $\mathsf{HomAlg}(\mathsf{T})$

Feder/Madelaine/Stewart, 2004

Instance: A of the same signature as T

Question: Hom $(A, T) \neq \emptyset$?

Lemma for G, H with 1 bin rel

FMS

 $\operatorname{Hom}\left(\mathbf{G},\mathbf{H}\right)\neq\emptyset\iff\operatorname{Hom}\left(\lambda_{2}\left(\mathbf{G}\right),\lambda_{2}\left(\mathbf{H}\right)\right)\neq\emptyset$

Corollary for $\overset{\textstyle \cdot}{\underset{\cdot}{\underset{\cdot}{\underset{\cdot}}{\underset{\cdot}}}}$ with 1 bin rel

FMS

 $\mathsf{CSP}\left(\widecheck{\mathsf{H}} \right) \leq_{\mathsf{m}} \mathsf{HomAlg}\left(\lambda_2 \left(\widecheck{\mathsf{H}} \right) \right)$

Т

a finite algebra of finite signature

 $\mathsf{HomAlg}(\mathsf{T})$

Feder/Madelaine/Stewart, 2004

Instance: A of the same signature as T

Question: Hom $(A, T) \neq \emptyset$?

Lemma for **G**, **H** with 1 bin rel

FMS

 $\operatorname{Hom}\left(\mathbf{G},\mathbf{H}\right)\neq\emptyset\iff\operatorname{Hom}\left(\lambda_{2}\left(\mathbf{G}\right),\lambda_{2}\left(\mathbf{H}\right)\right)\neq\emptyset$

Corollary for $\overset{\textstyle \cdot}{\mathbf{H}}$ with 1 bin rel

FMS

 $\mathsf{CSP}\left(\widecheck{\mathsf{H}} \right) \leq_{\mathsf{m}} \mathsf{HomAlg}\left(\lambda_2 \left(\widecheck{\mathsf{H}} \right) \right)$

Theorem for any rel template \Re

FMS

 $\mathsf{CSP}(\mathbf{R}) \equiv_{\mathsf{T}} \mathsf{CSP}(\mathbf{H}(\mathbf{R})) \equiv_{\mathsf{T}} \mathsf{HomAlg}(\lambda_2(\mathbf{H}(\mathbf{R})))$

$\delta\iota\chi(\mathcal{C})$

= class $\mathcal C$ of decision problems enjoys a

P vs NP-complete complexity dichotomy.

$\delta\iota\chi(\mathcal{C})$

= class $\mathcal C$ of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg) \Longrightarrow

```
\delta\iota\chi(\mathcal{C})
```

= class $\mathcal C$ of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg) \Longrightarrow

 $\delta\iota\chi\, ({\sf HomAlg} \ {\sf with} \ 2 \ {\sf unary} \ {\sf ops}) \implies$

$\delta\iota\chi(\mathcal{C})$

= class $\mathcal C$ of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg) \Longrightarrow
 $\delta\iota\chi$ (HomAlg with 2 unary ops) \Longrightarrow
 $\delta\iota\chi$ (CSP with 1 bin rel) \Longrightarrow

$\delta\iota\chi(\mathcal{C})$

= class $\mathcal C$ of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg) \Longrightarrow
 $\delta\iota\chi$ (HomAlg with 2 unary ops) \Longrightarrow
 $\delta\iota\chi$ (CSP with 1 bin rel) \Longrightarrow

 $\delta\iota\chi$ (CSP any rel signature)

$\delta\iota\chi(\mathcal{C})$

= class \mathcal{C} of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg) \Longrightarrow
 $\delta\iota\chi$ (HomAlg with 2 unary ops) \Longrightarrow
 $\delta\iota\chi$ (CSP with 1 bin rel) \Longrightarrow
 $\delta\iota\chi$ (CSP any rel signature)

Theorem for $\mathbf{A} = \langle A; F \rangle$ with $F \subseteq \mathcal{O}_A^{(\leq 1)}$ HomAlg $(\mathbf{A}) \equiv_{\mathsf{m}} \mathsf{CSP} (\langle A; F^{\bullet} \rangle)$

FMS

$\delta\iota\chi(\mathcal{C})$

= class $\mathcal C$ of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg with 2 unary ops) \Longrightarrow $\delta\iota\chi$ (CSP with 1 bin rel) \Longrightarrow

 $\delta\iota\chi$ (HomAlg) \Longrightarrow

$$\delta\iota\chi$$
 (CSP any rel signature) \Longrightarrow $\delta\iota\chi$ (CSP with function graphs) \Longrightarrow

Theorem for
$$\mathbf{A} = \langle A; F \rangle$$
 with $F \subseteq \mathcal{O}_A^{(\leq 1)}$

FMS |

 $\mathsf{HomAlg}(\mathbf{A}) \equiv_{\mathsf{m}} \mathsf{CSP}(\langle A; F^{\bullet} \rangle)$

$\delta\iota\chi(\mathcal{C})$

= class $\mathcal C$ of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta i \chi$$
 (HomAlg with 2 unary ops) \Longrightarrow

 $\delta\iota\chi$ (HomAlg) \Longrightarrow

$$\delta\iota\chi$$
 (CSP with 1 bin rel) \Longrightarrow $\delta\iota\chi$ (CSP any rel signature) \Longrightarrow

$$\delta \iota \chi$$
 (CSP with function graphs) \Longrightarrow

$$\delta\iota\chi$$
 (CSP with function graphs) \Longrightarrow $\delta\iota\chi$ (CSP with graphs of unary functions) \Longrightarrow

Theorem for $\mathbf{A}=\langle A;F\rangle$ with $F\subseteq\mathcal{O}_A^{(\leq 1)}$

 $\mathsf{HomAlg}(\mathbf{A}) \equiv_{\mathsf{m}} \mathsf{CSP}(\langle A; F^{\bullet} \rangle)$

FMS |

$\delta\iota\chi(\mathcal{C})$

= class \mathcal{C} of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg with 2 unary ops) \Longrightarrow $\delta\iota\chi$ (CSP with 1 bin rel) \Longrightarrow

 $\delta\iota\chi$ (HomAlg) \Longrightarrow

$$\delta\iota\chi$$
 (CSP any rel signature) \Longrightarrow

$$\delta\iota\chi$$
 (CSP with function graphs) \Longrightarrow

$$\delta\iota\chi$$
 (CSP with graphs of unary functions) \Longrightarrow $\delta\iota\chi$ (CSP with graphs of 2 unary functions) \Longrightarrow

Theorem for $\mathbf{A} = \langle A; F \rangle$ with $F \subseteq \mathcal{O}_A^{(\leq 1)}$ $\mathsf{HomAlg}(\mathbf{A}) \equiv_{\mathsf{m}} \mathsf{CSP}(\langle A; F^{\bullet} \rangle)$

FMS

$\delta\iota\chi(\mathcal{C})$

= class \mathcal{C} of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg with 2 unary ops) \Longrightarrow $\delta\iota\chi$ (CSP with 1 bin rel) \Longrightarrow

 $\delta\iota\chi$ (HomAlg) \Longrightarrow

$$\delta\iota\chi$$
 (CSP any rel signature) \Longrightarrow

$$\delta\iota\chi$$
 (CSP with function graphs) \Longrightarrow $\delta\iota\chi$ (CSP with graphs of unary functions) \Longrightarrow

$$\delta\iota\chi$$
 (CSP with graphs of 2 unary functions) \Longrightarrow

 $\delta \iota \chi$ (HomAlg with 2 unary ops)

Theorem for $\mathbf{A} = \langle A; F \rangle$ with $F \subseteq \mathcal{O}_A^{(\leq 1)}$ $\mathsf{HomAlg}(\mathbf{A}) \equiv_{\mathsf{m}} \mathsf{CSP}(\langle A; F^{\bullet} \rangle)$

FMS

Consequences

$\delta\iota\chi(\mathcal{C})$

= class $\mathcal C$ of decision problems enjoys a

P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

$$\delta\iota\chi$$
 (HomAlg with 2 unary ops) \Longrightarrow $\delta\iota\chi$ (CSP with 1 bin rel) \Longrightarrow

 $\delta\iota\chi$ (HomAlg) \Longrightarrow

$$\delta\iota\chi$$
 (CSP any rel signature) \Longrightarrow

$$\delta\iota\chi$$
 (CSP with function graphs) \Longrightarrow $\delta\iota\chi$ (CSP with graphs of unary functions) \Longrightarrow

$$\delta\iota\chi$$
 (CSP with graphs of 2 unary functions) \Longrightarrow

 $\delta\iota\chi$ (HomAlg with 2 unary ops)

Theorem for $\mathbf{A} = \langle A; F \rangle$ with $F \subseteq \mathcal{O}_A^{(\leq 1)}$ HomAlg $(\mathbf{A}) \equiv_{\mathsf{m}} \mathsf{CSP} (\langle A; F^{\bullet} \rangle)$ FMS |

A = CA

Interpretation

Bad news

Establishing dichotomy for CSP with function graphs (even only of 2 unary ops) is **as bad as** as establishing dichotomy for the whole relational CSP.

Interpretation

Bad news

Establishing dichotomy for CSP with function graphs (even only of 2 unary ops) is **as bad as** as establishing dichotomy for the whole relational CSP.

Good news

To get dichotomy for the whole relational CSP it suffices to have it for CSP with function graphs (even only of 2 unary ops).

Interpretation

Bad news

Establishing dichotomy for CSP with function graphs (even only of 2 unary ops) is **as bad as** as establishing dichotomy for the whole relational CSP.

Good news

To get dichotomy for the whole relational CSP it suffices to have it for CSP with function graphs (even only of 2 unary ops).

Complexity of CSP ($\langle A; F^{\bullet} \rangle$) determined by Pol_A $F^{\bullet} = F^*$.



Thus, let's come back to centraliser clones. . .

... I am not going to solve CSP-dichotomy, though.

I have a dream

I want to prove

I want to prove a

Theorem

$$|A| = k \ge 3 \implies \forall F \in \mathcal{C}_A \colon F = F^{(k)^{**}}$$

I want to prove a

Theorem, perhaps

$$|A| = k \ge 3 \implies \forall F \in \mathcal{C}_A \colon F = F^{(k)^{**}}$$

I want to prove a

Theorem, perhaps, some day

$$|A| = k \ge 3 \implies \forall F \in \mathcal{C}_A \colon F = F^{(k)^{**}}$$

(Burris-Willard conjecture)

I want to prove a

Theorem, perhaps, some day, but not today...

$$|A| = k \ge 3 \implies \forall F \in \mathcal{C}_A \colon F = F^{(k)^{**}}$$

(Burris-Willard conjecture)

I want to prove a

Theorem

today...

$$|A| = k \ge 3 \implies \forall F \in \mathcal{C}_A \colon F = F^{(k^k)^{**}}$$

 $Q\subseteq \mathcal{R}_A$, $\varrho\in \mathcal{R}_A$

For $m \ge |\varrho|$ TFAE

$$Q \subseteq \mathcal{R}_A$$
, $\varrho \in \mathcal{R}_A$

For $m \ge |\varrho|$ TFAE

(ϱ is pp-definable)

$$Q \subseteq \mathcal{R}_A$$
, $\varrho \in \mathcal{R}_A$

For $m \ge |\varrho|$ TFAE

(ϱ is pp-definable)

$Q \subseteq \mathcal{R}_A$, $\varrho \in \mathcal{R}_A$

For $m \geq |\varrho|$ TFAE

Proof (sketch)

- $\bullet \ \operatorname{Inv}_{A}\operatorname{Pol}_{A}^{(m)}Q = \operatorname{Inv}_{A}\operatorname{Pol}_{A}^{(\leq m)}Q$
- If $\varrho \notin \operatorname{Inv}_A \operatorname{Pol}_A Q$, i.e. $\operatorname{Pol}_A \{\varrho\} \not\supseteq \operatorname{Pol}_A Q$, then $\exists f \in \operatorname{Pol}_A Q$: $f \not\triangleright \varrho$.
- If f is a counterexample of large arity (> m), identification of variables gives a counterexample \tilde{f} of smaller arity

(ϱ is pp-definable)

Generally

Generally

Let k := |A|.

Corollary 1 for $\Sigma \subseteq \mathcal{O}_A$

$$\ell \geq k^n \implies \Sigma^{**(n)} = \underline{\Sigma}^{*(\ell)^{*(n)}}$$

Generally

Let k := |A|.

Corollary 1 for $\Sigma \subseteq \mathcal{O}_A$

$$\ell \geq k^n \implies \Sigma^{**(n)} = \underline{\Sigma}^{*(\ell)^{*(n)}}$$

Proof: Let $f \in \mathcal{O}_A^{(n)}$, then $|f^{\bullet}| = |A^n| = k^n \le \ell$

Generally

Let k := |A|.

Corollary 1 for $\Sigma \subseteq \mathcal{O}_A$

$$\ell \geq k^n \implies \Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

Proof: Let
$$f \in \mathcal{O}_A^{(n)}$$
, then $|f^{ullet}| = |A^n| = k^n \le \ell$

$$f \in \Sigma^{**}$$

Generally

Corollary 1 for
$$\Sigma \subseteq \mathcal{O}_A$$

$$\ell \geq k^n \implies \Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

Proof: Let
$$f \in \mathcal{O}_A^{(n)}$$
, then $|f^{\bullet}| = |A^n| = k^n \le \ell$
 $f \in \Sigma^{**} \iff f^{\bullet} \in \operatorname{Inv}_A \operatorname{Pol}_A \Sigma^{\bullet}$

Generally

Corollary 1 for
$$\Sigma \subseteq \mathcal{O}_A$$

$$\ell \geq k^n \implies \Sigma^{**(n)} = \underline{\Sigma}^{*(\ell)^{*(n)}}$$

Proof: Let
$$f \in \mathcal{O}_A^{(n)}$$
, then $|f^{\bullet}| = |A^n| = k^n \le \ell$
 $f \in \Sigma^{**} \iff f^{\bullet} \in \operatorname{Inv}_A \operatorname{Pol}_A^{\bullet} \Sigma^{\bullet}$
 $\iff f^{\bullet} \in \operatorname{Inv}_A \operatorname{Pol}_A^{(\ell)} \Sigma^{\bullet}$

Generally

Corollary 1 for
$$\Sigma \subseteq \mathcal{O}_A$$

$$\ell \geq k^n \implies \Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

Proof: Let
$$f \in \mathcal{O}_A^{(n)}$$
, then $|f^{\bullet}| = |A^n| = k^n \le \ell$

$$f \in \Sigma^{**} \iff f^{\bullet} \in \operatorname{Inv}_A \operatorname{Pol}_A \Sigma^{\bullet}$$

$$\iff f^{\bullet} \in \operatorname{Inv}_A \operatorname{Pol}_A^{(\ell)} \Sigma^{\bullet}$$

$$\iff f \in \left(\operatorname{Pol}_A^{(\ell)} \Sigma^{\bullet}\right)^*$$

Generally

Corollary 1 for
$$\Sigma \subseteq \mathcal{O}_A$$

$$\ell \geq k^n \implies \Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

Proof: Let
$$f \in \mathcal{O}_A^{(n)}$$
, then $|f^{\bullet}| = |A^n| = k^n \le \ell$

$$f \in \Sigma^{**} \iff f^{\bullet} \in \operatorname{Inv}_A \operatorname{Pol}_A \Sigma^{\bullet}$$

$$\iff f \in \left(\operatorname{Pol}_A^{(\ell)} \Sigma^{\bullet}\right)^* = \left(\Sigma^{*(\ell)}\right)^*$$

Corollary 2 for
$$\Sigma \subseteq \mathcal{O}_A$$
, $n \in \mathbb{N}_+$ $\ell \geq k^n - 1 \implies \operatorname{Inv}_A^{(n)} \operatorname{Pol}_A \Sigma^{\bullet} = \operatorname{Inv}_A^{(n)} \Sigma^{*(\ell)}$

Corollary 2 for
$$\Sigma \subseteq \mathcal{O}_A$$
, $n \in \mathbb{N}_+$
$$\ell \geq k^n - 1 \implies \mathsf{Inv}_A^{(n)} \mathsf{Pol}_A \Sigma^{\bullet} = \mathsf{Inv}_A^{(n)} \Sigma^{*(\ell)}$$

Proof: Let
$$\varrho \subset A^n$$
, then $|\varrho| \le k^n - 1 \le \ell$

Corollary 2 for
$$\Sigma \subseteq \mathcal{O}_A$$
, $n \in \mathbb{N}_+$ $\ell \geq k^n - 1 \implies \mathsf{Inv}_A^{(n)} \mathsf{Pol}_A \Sigma^{ullet} = \mathsf{Inv}_A^{(n)} \Sigma^{*(\ell)}$

Proof: Let
$$\varrho \subset A^n$$
, then $|\varrho| \le k^n - 1 \le \ell$ $\varrho \in \operatorname{Inv}_A^{(n)} \operatorname{Pol}_A \Sigma^{\bullet}$

Corollary 2 for
$$\Sigma \subseteq \mathcal{O}_A$$
, $n \in \mathbb{N}_+$ $\ell \geq k^n - 1 \implies \mathsf{Inv}_A^{(n)} \mathsf{Pol}_A \Sigma^{ullet} = \mathsf{Inv}_A^{(n)} \Sigma^{*(\ell)}$

Proof: Let
$$\varrho \subset A^n$$
, then $|\varrho| \le k^n - 1 \le \ell$
 $\varrho \in \operatorname{Inv}_A^{(n)} \operatorname{Pol}_A \Sigma^{\bullet} \iff \varrho \in \operatorname{Inv}_A^{(n)} \operatorname{Pol}_A^{(\ell)} \Sigma^{\bullet}$

Corollary 2 for
$$\Sigma \subseteq \mathcal{O}_A$$
, $n \in \mathbb{N}_+$ $\ell \geq k^n - 1 \implies \mathsf{Inv}_A^{(n)} \mathsf{Pol}_A \Sigma^{ullet} = \mathsf{Inv}_A^{(n)} \Sigma^{*(\ell)}$

Proof: Let
$$\varrho \subset A^n$$
, then $|\varrho| \le k^n - 1 \le \ell$
 $\varrho \in \operatorname{Inv}_A^{(n)} \operatorname{Pol}_A \Sigma^{\bullet} \iff \varrho \in \operatorname{Inv}_A^{(n)} \operatorname{Pol}_A^{(\ell)} \Sigma^{\bullet} = \operatorname{Inv}_A \Sigma^{*(\ell)}$

Recall: for
$$\ell \geq k^n$$
, $n \in \mathbb{N}_+$

$$\Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

$$\operatorname{Inv}_A^{(n)}\operatorname{\mathsf{Pol}}_A\Sigma^ullet = \operatorname{\mathsf{Inv}}_A^{(n)}\Sigma^{*(\ell)}$$

Recall: for
$$\ell \geq k^n$$
, $n \in \mathbb{N}_+$

$$\Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

$$\operatorname{Inv}_{\mathcal{A}}^{(n)}\operatorname{Pol}_{\mathcal{A}}\Sigma^{ullet}=\operatorname{Inv}_{\mathcal{A}}^{(n)}\Sigma^{*(\ell)}$$

Theorem (Pöschel, 2013(?), unpublished)

- $orall \Sigma \subseteq \mathcal{O}_{\mathcal{A}} \colon \quad \Sigma^* = \langle \Sigma
 angle^{(k)^*} \cap \mathsf{Pol}_{\mathcal{A}} \, \mathit{Q}_{\langle \Sigma
 angle}$
- $\langle \Sigma \rangle$ is any closure $\langle \Sigma \rangle_{\mathrm{I,F}} \subseteq \langle \Sigma \rangle \subseteq \Sigma^{**}$ • $Q_G \subseteq \mathrm{Inv}_A^{(4)} \, \mathrm{Pol}_A \, G^{\bullet} \, \text{ for } G \subseteq \mathcal{O}_A.$

Recall: for $\ell \geq k^n$, $n \in \mathbb{N}_+$

$$\Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

$$\operatorname{Inv}_A^{(n)}\operatorname{Pol}_A\Sigma^{ullet}=\operatorname{Inv}_A^{(n)}\Sigma^{*(\ell)}$$

Theorem (Pöschel, 2013(?), unpublished)

where

- $\forall \Sigma \subseteq \mathcal{O}_A \colon \quad \Sigma^* = \langle \Sigma \rangle^{(k)^*} \cap \mathsf{Pol}_A \ \mathcal{Q}_{\langle \Sigma \rangle}$
- $\begin{array}{ccc} \bullet & \langle \Sigma \rangle \text{ is any closure } \langle \Sigma \rangle_{I,F} \subseteq \langle \Sigma \rangle \subseteq \Sigma^{**} \\ \bullet & \mathcal{Q}_{G} \subseteq \operatorname{Inv}^{(4)}_{\Delta} \operatorname{Pol}_{\Delta} G^{\bullet} \text{ for } G \subseteq \mathcal{O}_{\Delta}. \end{array}$

Corollary for
$$\langle \Sigma \rangle = \Sigma$$

$$\Sigma^* = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, Q_{\Sigma} = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, \mathsf{Inv}_A^{(4)} \, \mathsf{Pol}_A \, \Sigma^{ullet}$$

$$\Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

$$\operatorname{Inv}_{\mathcal{A}}^{(n)}\operatorname{Pol}_{\mathcal{A}}\Sigma^{\bullet}=\operatorname{Inv}_{\mathcal{A}}^{(n)}\Sigma^{*(\ell)}$$

Theorem (Pöschel, 2013(?), unpublished)

where

- $orall \, \Sigma \subseteq \mathcal{O}_A \colon \quad \Sigma^* = \langle \Sigma
 angle^{(k)^*} \cap \mathsf{Pol}_A \, Q_{\langle \Sigma
 angle}$
- $\langle \Sigma \rangle$ is any closure $\langle \Sigma \rangle_{I,F} \subseteq \langle \Sigma \rangle \subseteq \Sigma^{**}$ $Q_G \subseteq \operatorname{Inv}_{\mathbf{A}}^{(4)} \operatorname{Pol}_{\mathbf{A}} G^{\bullet}$ for $G \subseteq \mathcal{O}_{\mathbf{A}}$.

$$\Sigma^* = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, Q_{\Sigma} = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, \mathsf{Inv}_A^{(4)} \, \mathsf{Pol}_A \, \Sigma^{ullet}$$

For
$$k \geq 4$$
, $F \in \mathcal{C}_A$, $\Sigma = F^*$, $\ell \geq k^k \geq k^4$
 $F = \Sigma^*$

$$\sum^{**(n)} = \sum^{*(\ell)^{*(n)}}$$

$$\operatorname{Inv}_{\mathcal{A}}^{(n)}\operatorname{Pol}_{\mathcal{A}}\Sigma^{\bullet}=\operatorname{Inv}_{\mathcal{A}}^{(n)}\Sigma^{*(\ell)}$$

Theorem (Pöschel, 2013(?), unpublished)

where

- $orall \, \Sigma \subseteq \mathcal{O}_{A} \colon \quad \Sigma^{*} = \langle \Sigma
 angle^{(k)^{*}} \cap \mathsf{Pol}_{A} \, \mathit{Q}_{\langle \Sigma
 angle}$
- $\langle \Sigma \rangle$ is any closure $\langle \Sigma \rangle_{I,F} \subseteq \langle \Sigma \rangle \subseteq \Sigma^{**}$ $Q_G \subseteq \operatorname{Inv}_{\mathbf{A}}^{(4)} \operatorname{Pol}_{\mathbf{A}} G^{\bullet}$ for $G \subseteq \mathcal{O}_{\mathbf{A}}$.

$$\Sigma^* = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, Q_{\Sigma} = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, \mathsf{Inv}_A^{(4)} \, \mathsf{Pol}_A \, \Sigma^{ullet}$$

For
$$k \geq 4$$
, $F \in \mathcal{C}_A$, $\Sigma = F^*$, $\ell \geq k^k \geq k^4$
$$F = \Sigma^* = \Sigma^{**(k)^*} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} \operatorname{Pol}_A \Sigma^{\bullet}$$

$$\sum^{**(n)} = \sum^{*(\ell)^{*(n)}}$$

$$\operatorname{Inv}_{\mathcal{A}}^{(n)}\operatorname{Pol}_{\mathcal{A}}\Sigma^{\bullet}=\operatorname{Inv}_{\mathcal{A}}^{(n)}\Sigma^{*(\ell)}$$

Theorem (Pöschel, 2013(?), unpublished)

where

- $orall \Sigma \subseteq \mathcal{O}_A \colon \quad \Sigma^* = \langle \Sigma
 angle^{(k)^*} \cap \mathsf{Pol}_A \ \mathcal{Q}_{\langle \Sigma
 angle}$
- $\langle \Sigma \rangle$ is any closure $\langle \Sigma \rangle_{I,F} \subseteq \langle \Sigma \rangle \subseteq \Sigma^{**}$ $Q_G \subseteq \operatorname{Inv}_{\mathbf{A}}^{(4)} \operatorname{Pol}_{\mathbf{A}} G^{\bullet}$ for $G \subseteq \mathcal{O}_{\mathbf{A}}$.

$$\Sigma^* = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, Q_{\Sigma} = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, \mathsf{Inv}_A^{(4)} \, \mathsf{Pol}_A \, \Sigma^{ullet}$$

For
$$k \geq 4$$
, $F \in \mathcal{C}_A$, $\Sigma = F^*$, $\ell \geq k^k \geq k^4$

$$F = \Sigma^* = \Sigma^{**(k)^*} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} \operatorname{Pol}_A \Sigma^{\bullet}$$

$$= \Sigma^{*(\ell)^{*}(k)^*} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} \Sigma^{*(\ell)}$$

$$\Sigma^{**(n)} = \Sigma^{*(\ell)^{*(n)}}$$

$$\operatorname{Inv}_{\mathcal{A}}^{(n)}\operatorname{Pol}_{\mathcal{A}}\Sigma^{\bullet}=\operatorname{Inv}_{\mathcal{A}}^{(n)}\Sigma^{*(\ell)}$$

Theorem (Pöschel, 2013(?), unpublished)

where

- $\forall \Sigma \subseteq \mathcal{O}_A \colon \quad \Sigma^* = \langle \Sigma \rangle^{(k)^*} \cap \mathsf{Pol}_A \ \mathcal{Q}_{\langle \Sigma \rangle}$
- $\qquad \langle \Sigma \rangle \text{ is any closure } \langle \Sigma \rangle_{\mathrm{I},\mathrm{F}} \subseteq \langle \Sigma \rangle \subseteq \Sigma^{*\,*}$

$$\Sigma^* = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, Q_{\Sigma} = \Sigma^{(k)^*} \cap \mathsf{Pol}_A \, \mathsf{Inv}_A^{(4)} \, \mathsf{Pol}_A \, \Sigma^{ullet}$$

For
$$k \geq 4$$
, $F \in \mathcal{C}_A$, $\Sigma = F^*$, $\ell \geq k^k \geq k^4$

$$F = \Sigma^* = \Sigma^{**(k)^*} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} \operatorname{Pol}_A \Sigma^{\bullet}$$

$$= \Sigma^{*(\ell)^{*(k)^*}} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} \Sigma^{*(\ell)}$$

$$= F^{(\ell)^{*(k)^*}} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} F^{(\ell)}$$

For
$$F \in \mathcal{C}_A$$
, $\ell \geq k^k$, $k \geq 4$, let $G := F^{(\ell)^{**}}$

Note
$$G^{(\ell)} = F^{(\ell)^{**(\ell)}} = F^{**(\ell)^{**(\ell)}} = F^{**(\ell)} = F^{(\ell)}$$
.

For
$$F \in \mathcal{C}_A$$
, $\ell \ge k^k$, $k \ge 4$, let $G := F^{(\ell)^{**}}$
Note $G^{(\ell)} = F^{(\ell)^{**}(\ell)} = F^{**}(\ell)^{**}(\ell) = F^{**}(\ell) = F^{(\ell)}$. Thus
$$F = F^{(\ell)^{*}(k)^{*}} \cap \text{Pol}_A \operatorname{Inv}_A^{(4)} F^{(\ell)} = G^{(\ell)^{*}(k)^{*}} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} G^{(\ell)} = G.$$

For
$$F \in \mathcal{C}_A$$
, $\ell \geq k^k$, $k \geq 4$, let $G := F^{(\ell)^{**}}$

Note
$$G^{(\ell)} = F^{(\ell)^{**}(\ell)} = F^{**}(\ell)^{**}(\ell) = F^{**}(\ell) = F^{(\ell)}$$
. Thus

$$F = F^{(\ell)*(k)*} \cap \text{Pol}_A \operatorname{Inv}_A^{(4)} F^{(\ell)} = G^{(\ell)*(k)*} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} G^{(\ell)} = G.$$

Characterisation

For n > k TFAE

- $\forall F \in \mathcal{C}_A$: $F = F^{(n)^{**}}$
- ullet \forall $F \in \mathcal{C}_A$: $F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_{\left\langle F^{(n)}
 ight
 angle}$

For
$$F \in \mathcal{C}_A$$
, $\ell \geq k^k$, $k \geq 4$, let $G := F^{(\ell)^{**}}$

Note
$$G^{(\ell)} = F^{(\ell)^{**}(\ell)} = F^{**}(\ell)^{**}(\ell) = F^{**}(\ell) = F^{(\ell)}$$
. Thus

$$F = F^{(\ell)^*(k)^*} \cap \text{Pol}_A \operatorname{Inv}_A^{(4)} F^{(\ell)} = G^{(\ell)^*(k)^*} \cap \operatorname{Pol}_A \operatorname{Inv}_A^{(4)} G^{(\ell)} = G.$$

Characterisation

For n > k TFAE

- $\forall F \in \mathcal{C}_A \colon F = F^{(n)^{**}}$
- ullet \forall $F \in \mathcal{C}_A$: $F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_{\left\langle F^{(n)}
 ight
 angle}$

Corollary for $F \in \mathcal{C}_A$

$$F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_{\langle F^{(k^k)} \rangle}$$

We used

$$\forall F \in \mathcal{C}_A$$
: $F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_F$,

We used

$$\forall F \in \mathcal{C}_A$$
: $F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_F$,

$$Q_F \subseteq \operatorname{Inv}_A^{(4)} \operatorname{Pol}_A F^{\bullet}$$

We used

```
\forall F \in \mathcal{C}_A \colon F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_F, \qquad Q_F \subseteq \operatorname{Inv}_A^{(4)} \operatorname{Pol}_A F^{\bullet} "from the dual side" \leadsto k^k
```

We used

 $\forall \ F \in \mathcal{C}_A \colon \quad F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_F, \qquad \qquad Q_F \subseteq \operatorname{Inv}_A^{(4)} \operatorname{Pol}_A F^{\bullet}$ "from the dual side" $\leadsto k^k$

We could also exploit

$$\forall F \in \mathcal{C}_A$$
: $F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_{\langle F^{(n)} \rangle}$

We used

$$\forall F \in \mathcal{C}_A \colon F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_F, \qquad Q_F \subseteq \operatorname{Inv}_A^{(4)} \operatorname{Pol}_A F^{\bullet}$$
 "from the dual side" $\leadsto k^k$

We could also exploit

$$\forall F \in \mathcal{C}_A \colon \quad F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_{\langle F^{(n)} \rangle}$$
 and try to reduce the arity from $n = k^k$

We used

```
\forall F \in \mathcal{C}_A \colon F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_F, \qquad Q_F \subseteq \operatorname{Inv}_A^{(4)} \operatorname{Pol}_A F^{\bullet} "from the dual side" \leadsto k^k
```

We could also exploit

```
\forall F \in \mathcal{C}_A \colon F^* = F^{(k)^*} \cap \operatorname{Pol}_A Q_{\langle F^{(n)} \rangle}
and try to reduce the arity from n = k^k
\Longrightarrow \operatorname{Requires} understanding of Q_F.
```


Commutation of binary operations

Does the following equation hold?

$$f(g(t , y), g(f , a)) \approx g(f(t , f), f(y , a))$$
?

Commutation of binary operations

Does the following equation hold?

```
f(g(thanks, your), g(for, attention)) \approx g(f(thanks, for), f(your, attention))?
```