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Disclaimer

Today all my carrier sets A are finite and
non-empty!
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Disclaimer

Today all my carrier sets A are finite and
non-empty!

Assume A = {0,..., k— 1} if it helps. |




Apologies

| will bore you. ]

M. Behrisch Centralisers in algebra and elsewhere



Apologies

| will bore some of you. ]
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Sit back, relax and J
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Everyone likes groups?

@ structure (G; ®) with a binary operation
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@ in general: » not commutative, but some elements commute
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Everyone likes groups?

@ structure (G; ®) with a binary operation

(group, semigroup, ring, algebra...)
@ in general: » not commutative, but some elements commute
@ binary relation: x L y <= xy =yx (ie. xOy =y ®x)

Toy example G = Dih(3)

Dih(3) = (r,s | r* = s> = e,sr = r™1s)
Al O rls s
Pt O s s
ot 0 rts s O
2l 0 s 9% rls
Ps| rPs r’s rls ° r? r
r*s| r's % r’s rt P
r’s| r’s rls s r» 1 -

v
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Everyone likes groups?

@ structure (G; ®) with a binary operation

(group, semigroup, ring, algebra...)
@ in general: » not commutative, but some elements commute
@ binary relation: x L y <= xy =yx (ie. xOy =y ®x)

Toy example G = Dih(3)
Dlh( Y={(r,s|rP=s*=esr=r"1s)

Al O rls s

Pt O s s o x" 1 x

rrlort . r‘'s r’s %

r’| r . r’s % rls

Ps| rPs r’s rls ° r? r

r*s| r's % r’s rt P

r’s| r’s rls s r» 1 -

v
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Everyone likes groups?

@ structure (G; ®) with a binary operation

(group, semigroup, ring, algebra...)
@ in general: » not commutative, but some elements commute
@ binary relation: x L y <= xy =yx (ie. xOy =y ®x)

Toy example G = Dih(3)

Dih(3) = (r,s
o R

| rP=s%=¢e,sr=r"1s)
1,2 0 1 2

> % rls r3s

P 2 s s s e x"Lx
Al B s s s e x
2l B s s i

Ps| rPs r’s rls

r*s| r's % r’s rt

r’s| r’s rls r% r?

v
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Everyone likes groups?

@ structure (G; ®) with a binary operation

(group, semigroup, ring, algebra...)
@ in general: » not commutative, but some elements commute
@ binary relation: x L y <= xy =yx (ie. xOy =y ®x)

Toy example G = Dih(3)

Dih(3) = (r,s | r* = s> = e,sr = r™1s)
Pl 2 9% s 2
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Everyone likes groups?

@ structure (G; ®) with a binary operation

(group, semigroup, ring, algebra...)
@ in general: » not commutative, but some elements commute
@ binary relation: x L y <= xy =yx (ie. xOy =y ®x)

Toy example G = Dih(3)
Dih(3) = (r,s | r* = s> = e,sr = r™1s)
0t 2 % s s
21 B B B B B BEras
1 1
r . . . rs o x L x
2 2
Sl B N °oelx
0 2. 1
s B8 r2s ris o xly
ris - s r’s r! y L x
r2s | B8 ris r°s 2

v
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Observations from our toy example

eVxe G:e l x
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e VxeG:el x
@ | is symmetric
o ylx,z,lx = yzlx
x(yz) = (xy)z = (yx)z = y(xz) = y(2x) = (yz)x
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Observations from our toy example

o Vxe G:e L x
@ | is symmetric
o ylx,z,lx = yzlx
x(yz) = (xy)z = (yx)z = y(xz) = y(2x) = (yz)x
@ x | x,s0x" L x
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x

xy =yx <= y ix=xy7!
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x

xy =yx <= y ix=xy7!

Centralisers
(G; ®) groupoid, x € G, F C G.
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x

xy =yx <= y ix=xy7!

Centralisers
(G; ®) groupoid, x € G, F C G.
x':={yeG|ylx}
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x

xy =yx <= y ix=xy7!

Centralisers

(G; ®) groupoid, x € G, F C G.
x={yeG|ylx}

Fi=Nerx ={yeG|VxeF:y Lx}
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x

xy =yx <= y ix=xy7!

Centralisers

(G; ®) groupoid, x € G, F C G.
x={yeG|ylx}

Fi=Nerx ={yeG|VxeF:y Lx}

Centralisers in groups G
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x

xy =yx <= y ix=xy7!

Centralisers

(G; ®) groupoid, x € G, F C G.
x={yeG|ylx}

Fi=Nerx ={yeG|VxeF:y Lx}

Centralisers in groups G
x*<G

v
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x

xy =yx <= y ix=xy7!

Centralisers

(G; ®) groupoid, x € G, F C G.
x={yeG|ylx}

Fi=Nerx ={yeG|VxeF:y Lx}

Centralisers in groups G
x* <G (x)e C x*

v
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Observations from our toy example

Vxe G:el x

L is symmetric

ylx,z,lx = yzl1lx

x(yz) = (xv)z = (yx)z = y(xz) = y(2x) = (yz)x
x L x,s0x" 1 x

groups: y L x = y 11 x

xy =yx <= y ix=xy7!

Centralisers

(G; ®) groupoid, x € G, F C G.
x={yeG|ylx}

Fi=Nerx ={yeG|VxeF:y Lx}

Centralisers in groups G

x*< G (x)e C x* x* = x"1

v
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Finishing the toy example

G = Dih(3)

Dih(3) = <r,s | P =s?=e,sr= r715>

e ¢* =Dih(3)
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Finishing the toy example

G = Dih(3)

Dih(3) = <r,s | P =s?=e,sr= r715>

e ¢* =Dih(3)
o rr=r"= <r>Dih(3) ={r%rt,r’}

° r's* = <riS>Dih(3) ={r%r's}
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Finishing the toy example

G = Dih(3)

<
[}

TR
N B O

Dih(3) = <r,s | P =s?=e,sr= r715>

AT
N B O
w u

e ¢* =Dih(3)
o rr=r"= <r>Dih(3) ={r%r,r?}
° r's* = <riS>Dih(3) ={r%r's}

e by intersection: {r,s}" = {r°}
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Finishing the toy example

G = Dih(3)

Dih(3) = <r,s | P =s?=e,sr= r715>

e ¢* =Dih(3)

o rr=r"= <r>Dih(3) ={r%rt,r’}
o r's' = <riS>Dih(3) ={r%r's}

e by intersection: {r,s}" = {r°}

o these are all possible subgroups,
so no other centralisers (not a general phenomenon)

M. Behrisch Centralisers in algebra and elsewhere



| like functions. . .
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| like functions. . .

... but first quiz: who is this?
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| like functions. . .

... but first quiz: who is this?
Arthur Cayley Nobuo Yoneda
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| like functions. . .

Cayley (or Yoneda) says. ..

every group is (isomorphic to) a permutation group
every semigroup is a transformation semigroup
every monoid is a transformation monoid

every Menger algebra is a Menger algebra of functions

every abstract clone is a concrete clone
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| like functions. . .

Cayley (or Yoneda) says. ..
@ every group is (isomorphic to) a permutation group
@ every semigroup is a transformation semigroup
@ every monoid is a transformation monoid
@ every Menger algebra is a Menger algebra of functions

@ every abstract clone is a concrete clone

M < (T(A); o) transformation monoid

f*={geM| gof=rFfog} (f e M)
Fr={geM|VfeF.gof=Ffog} (FC M)
flg < VxeA: g(f(x))="~f(g(x)) (f,g € M)

v
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| like higher-ary operations even more. . .

Finitary operations
@ For ne€ IN, afunc f: A” — A'is a n-ary operation on A
° Oﬁ\") := A*" set of n-ary operations on A

° Oa:=Uen, O(A") set of all finitary operations on A
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| like higher-ary operations even more. . .

Finitary operations
@ For ne€ IN, afunc f: A” — A'is a n-ary operation on A
° Oﬁ\") := A*" set of n-ary operations on A

° Oa:=Uen, O(A") set of all finitary operations on A

No nullary operations, so sad. .. J
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Commutation for higher-ary operations

Commutation

FornmeIN,, f € (’)(An), g€ O(m), we define

1l g <=
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Commutation for higher-ary operations

Commutation

FornmeIN,, f € (’)(An), g€ O(m), we define

1 g <= VX =(x)i<icm € AT
1<j<n

X1,1 " Xi,n

Xm,1 " Xm,n
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Commutation for higher-ary operations

Commutation

FornmeIN,, f € (’)(An), g€ O(m), we define

1 g <= VX =(x)i<icm € AT

1<j<n
8 8
VN VN
X1,1 " Xi,n
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Commutation for higher-ary operations

Commutation

FornmeIN,, f € (’)(An), g€ O(m), we define

1 g <= VX =(x)i<icm € AT

1</<n
g g
N N
(xi,1 -0 xi,0) =
(Xm, * Xm, ) =
N— N—
G - Cn
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Commutation for higher-ary operations

Commutation

FornmeIN,, € (’)(An), g € O™ we define
1 g <= VX =(x)i<icm € AT
1<j<n
g g g
(XL . X]_7 ) =
(Xmi - Xm) =
(a - )=y
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Remarks on the definition

Remark 1
Defining for m,n € N, f € O and any

X = (xij)i<i<m € A™"
1<j<n

FX(L,4)) f(xa,.--Xn)

£ (X (m,)) o ]

(f row-wise)

V.
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Remarks on the definition

Remark 1

Defining for m,n € N, f € O and any
X = (X;J)1§i§m e Amxn

FX(L,4)) f (X, Xa,0)
F(X) = : = :
f(X(m,-)) f (Xm1y---sXmn)
(f row-wise)

we have for € O g e O

Lg < VY =(yij)icicm €A™ g (F(Y) =1 (g(YT))-

1<<n

V.
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Remarks on the definition

Remark 1

Forn,me N, f € OV g e o:
flg < VXeA™": g(f(X)="f(g(X")).
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Remarks on the definition

Remark 1

FornnmeN,, feoOW ge (’)(Am):
flg < VXeA™": g(f(X))="f(g(XT)).

Corollary (since (XT)T = X)
Forf,g€Oup f 1L g < g L f.
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Remarks on the definition

Remark 1

FornnmeN,, feoOW ge (’)(Am):
flg < VXeA™": g(f(X))="f(g(XT)).

Corollary (since (XT) T = X)
Forf,g€eOp f L g < gL f.

Remark 2
FornmeIN,, € (’)ﬁ\"), g€ (’)(Am):
L g < VXeA™": (c1,---,€n)

=g(rn,...,rm)-
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Remarks on the definition

Remark 1

FornnmeN,, feoOW ge (’)(Am):
flg < VXeA™": g(f(X))="f(g(XT)).

Corollary (since (XT) T = X)
Forf,g€eOp f L g < gL f.

Remark 2
FornmelN,, f e oW g€ (’)(Am):
Lg < VX eA™™: (g(X(-1)),...,8(X(-,n)))
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Remarks on the definition

Remark 1

FornnmeN,, feoOW ge (’)(Am):
flg < VXeA™": g(f(X))="f(g(XT)).

Corollary (since (XT) T = X)
Forf,g€eOp f L g < gL f.

Remark 2
FornmelN,, f e (’)(") g€ (’)(m)
Lg = (Af,g) \— (g(X(-,l))7~--,g(X(-,n)))

%g( (X(lv'))>"'7 (X(lv')))
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Preservation of relations

Relations
Any o C A" m-ary relation on AJ
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Preservation of relations

Relations
Any o C A™ m-ary relation on A

Functions preserve relations

FornmeIN,, € (954"), o CA™

>0 =
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Preservation of relations

Relations

Any o C A"

m-ary relation on A
Functions preserve relations
FornmeIN,, € (954"), o CA™

> = VX =

(de)l <i<m € Amxn.
1<<n

X1,1 " Xi,n

)

Xm,l e Xm,n
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Preservation of relations

Relations

Any o C A"

m-ary relation on A
Functions preserve relations

FornmeIN,, € (954"), o CA™

> = VX =

(de)l <i<m € Amxn.
1<<n

~

X1,1 " Xi,n

)

Xm,l"' Xm,n

~—

~—

m

m
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Preservation of relations

Relations
Any o C A™ m-ary relation on A

Functions preserve relations

FornmeIN,, € (954"), o CA™

> o <= VX = (Xij)i<i<m € A™"
1<<n
(X, xi,) =
(Xm, * Xm, ) =
m m
Q o« s . Q

M. Behrisch Centralisers in algebra and elsewhere



Preservation of relations

Relations
Any o C A™ m-ary relation on A

Functions preserve relations

FornmeIN,, € (954"), o CA™

> o <= VX = (Xij)i<i<m € A™"
1<<n
(X, xi,) =
(Xm, 'Xm,) =
m m m
o -0 = 0
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Relation to commutation

Graph of g € (9(Am)
g* ={(x,g(x)) | x€ A"} C Am*




Relation to commutation

(m)
Graph of g € O,

g° = {(x,g(x)) | x €A™} C Am1

Preserving graphs
FornmeN,, f e O, ge ol
> g* =




Relation to commutation

(m)
Graph of g € Op

g° = {(x,g(x)) | x €A™} C Am1

Preserving graphs
FornmelN,, e oW g€ (’)(m)

> g. g \V/X (X,’J)1<l<m+1 6 A m+1
1<<n

X11 " X1,n

Xm1 - Xmn

Xm+1,1 * Xm+1,n




Relation to commutation

(m)
Graph of g € Op

g° = {(x,g(x)) | x €A™} C Am1

Preserving graphs
FornmelN,, e oW g€ (’)(m)

> g. g \V/X (X,’J)1<l<m+1 6 A m+1
1<<n

X111 Xi,n

Xm,1 - Xm,n

Xm+1,1 * Xm+1,n
m m

g' g'




Relation to commutation

(m)
Graph of g € Op

g° = {(x,g(x)) | x €A™} C Am1

Preserving graphs
FornmelN,, e oW g€ (’)(m)

> g. g \V/X (X,’J)1<l<m+1 6 A m+1
1<<n

)
)

X1,1 ° Xi,n

3
=
X
3

5.0 (
=50 (




Relation to commutation

(m)
Graph of g € Op

g° = {(x,g(x)) | x €A™} C Am1

Preserving graphs
FornmelN,, e oW g€ (’)(m)

> g. g \V/X (X,’J)1<l<m+1 6 A m+1
1<<n

(x Xi,,) =
(Xm7 'Xm7):
()= y
m m
g...g.




Relation to commutation

(m)
Graph of g € Op

g° = {(x,g(x)) | x €A™} C Am1

Preserving graphs
FornmelN,, e oW g€ (’)(m)

> g. g \V/X (X,’J)1<l<m+1 6 A m+1
1<<n

(x X1,,) =
(Xm7 'Xm7):
(a - )=y
Mm Mm m
g - g =g




Relation to commutation

(m)
Graph of g € Op

g° = {(x,g(x)) | x €A™} C Am1

Preserving graphs
FornmelN,, e oW g€ (’)(m)
|> g. <:> \V/X (X,’J)1<l<m+1 6 A m+1

1<j<n
VN VN /g;
(Xl ...X17):
(Xm7 'Xm7):
(a )=y
Mm Mm Mm
g g =g




Relation to commutation

(m)
Graph of g € Op

g° = {(x,g(x)) | x €A™} C Am1

Preserving graphs
FornmelN,, e oW g€ (’)(m)
|> g. <:> \V/X (X,’J)1<l<m+1 6 A m+1

1<j<n
£ & £
(X100 x1,0) =
(Xm7 'Xm7):
(a - )=y

— flg m m m
g -8 =g




Galois connections

Pol - Inv Galois correspondence
For F C O4 (operations) and Q C R, (relations) we put

PolaQ :={f €O | Yo Q: f1>p} (polymorphisms of Q)
InvaF :={0€Ra | Vf €F: Do} (invariants of F)

4
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PolaQ :={f €O | Yo Q: f1>p} (polymorphisms of Q)
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4

Polalnvy F clone gen. by F (closure: composition, projs)
Inva Pols @ relational clone gen by @ (closure: pp-definitions)
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Galois connections

Pol - Inv Galois correspondence
For F C O4 (operations) and Q C R, (relations) we put

PolaQ :={f €O | Yo Q: f1>p} (polymorphisms of Q)
InvaF :={0€Ra | Vf €F: Do} (invariants of F)

4

Polalnvy F clone gen. by F (closure: composition, projs)
Inva Pols @ relational clone gen by @ (closure: pp-definitions)

v

Centraliser Galois correspondence
For F C O4 we put

Fr={gecOs | VFecF:glf} (centraliser of F)

v




Galois connections

Pol - Inv Galois correspondence
For F C O4 (operations) and Q C R, (relations) we put

PolaQ :={f €O | Yo Q: f1>p} (polymorphisms of Q)
InvaF :={0€Ra | Vf €F: Do} (invariants of F)

4

Polalnvy F clone gen. by F (closure: composition, projs)
Inva Pols @ relational clone gen by @ (closure: pp-definitions)

v

Centraliser Galois correspondence
For F C O4 we put

Fr={gecOs | VFecF:glf} (centraliser of F)

v

F** bicentraliser of £ (closure: (clone +) pp-definitions) |




Connections

Centralisers & bicentralisers
For F C O we have (Fe:={f*| feF})

F* = Pols F* (centralisers are clones!)
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Connections

Centralisers & bicentralisers
For F C O we have (Fe:={f*| feF})

F* = Pols F* (centralisers are clones!)
:{gG O, | g' € InvAF}
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Connections

Centralisers & bicentralisers
For F C O we have (Fe:={f*| feF})

F* = Pols F* (centralisers are clones!)
:{gGOA | g'ElnvAF}
F** = POlA F*. = POlA (O;\ﬂ InvA F)
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Connections

Centralisers & bicentralisers
For F C O we have (Fe:={f*| feF})

F* = Pol, F* (centralisers are clones!)
={ge€0s | g°* €lnvyF}

F** = Pola F** = Pola (O3 NInva F)
={gc€O0a| g €lnvaF'} ={g€Oa | g°* €lnvaPolalF*}
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Connections

Centralisers & bicentralisers
For F C O we have (Fe:={f*| feF})

F* = Pol, F* (centralisers are clones!)
={ge€0s | g°* €lnvyF}

F** = Pola F** = Pola (O3 NInva F)
={gc€O0a| g €lnvaF'} ={g€Oa | g°* €lnvaPolalF*}

Complete lattices
La clones
CaC La centraliser clones (\-subsemilattice)

v
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Knowledge about these lattices

Al =2 Al =2
L] = N |ICal =25
(E. L. Post, 1921/1941) (A.B. KysHeuos, 1977; et.al.)
Al >3 Al =3
|L4] = 2% (FO. . Snos / |Ca| = 2986
A.A. Myuhuk, 1959) (A. ®. danuneyenko, 1974-79)
Al >3 Al < Ro
minimal and maximal clones ICal < No
(I. G. Rosenberg, 1970,1986) S. Burris, R. Willard, 1987
different bits and pieces | Unary generated
(W. Harnau, 1974-76;
[. G. Rosenberg, H. Machida)



We know the basics about centralisers in
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We know the basics about centralisers in

... now lets move on to “elsewhere". ]
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The algebraist’s take on CSP

r a finite relational signature
T a finite relational structure of signature I” (template)

CSP(T)...a decision problem

Instance: V of signature I
Question: Hom (V, T) # 07
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Question: ds: V — T: (T,s) E ¢?




The algebraist’s take on CSP

r a finite relational signature
T a finite relational structure of signature I” (template)

CSP(T)...a decision problem

Instance: V of signature I
Question: Hom (V, T) # 07

Computer Scientists have a different perspective on CSP(T)

Instance: V = <V; (R‘J)Rer> & @ = Nrer N\, gy R(v)
Question: ds: V — T: (T,s) E ¢?

Logicians still have another view on CSP(T)

Instance: V = <V; (R¥>Rer> < = (3v),ey Arer N\, crv R(V)
Question: T E v, i.e., ¥ € pp-Th(T)?

v




1 0 0
T=({0,1};RT, ST, RT={[0],[1].,[0]} ST=<
0 1

M. Behrisch Centralisers in algebra and elsewhere



1 0 0
0 1

One instance, three perspectives
11V =({0,1,2}; RY, SY)

(i By

Q1 Jh € Hom (V,T)?
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1 0 0
T=({0,1};RT, ST, RT={[0],[1].,[0]} ST=<
0 0 1

One instance, three perspectives
11V =({0,1,2}; RY, SY)

e

Q1 3h € Hom(V,T)?
12 ¢ = R(x0, x1,x1) A R(x2, X0, X1) A\ R(x2, %2, %) A S(x0, %2)
Q2 3h:V—T: (T,h) =7
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1 0 0
T=({0,1};RT, ST, RT={[0],[1].,[0]} ST=<
0 1

One instance, three perspectives
11V =({0,1,2}; RY, SY)

e

Q1 3h € Hom(V,T)?

12 ¢ = R(x0, X1, X1) A R(X2, X0, X1) A R(X2, X2, X0) A S(X0, X2)
Q2 3h:V—T: (T,h) =7

13 ¥ = dxoIxydxa: ¢
Q3 ¢ € pp-Th(T)?
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Connection to clones

T, =(T:Q), T,=(T; Q@) templates

pp-definable templates
@ C Invy Polr @ = CSP (T,) <. CSP (T,)

A~ ~

POlT @ 2 PC)lT Q = CSP (Il) <m CSp (T2)

~
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Connection to clones

T, =(T;Qu), T, =(T,; @) templates
pp-definable templates
Ql - Ian POlT Q2 — CSP (Tl) <m CSP (TZ)

A~ ~

POlT @ 2 PC)lT Q = CSP (Il) <m CSp (T2)

~

Reason: substitute pp-definitions (Jeavons, 1998)

Ix N\ Ri(xi) <= 3IxN\;3yi Njiy Sion (X3, ¥i) © i)
< Ixy A\, Se((xy) o )
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Connection to clones

T, =(T:Q), T,=(T; Q@) templates

pp-definable templates
@ C Invy Polr @ = CSP (T,) <. CSP (T,)

A~ ~

POlT @ 2 PC)lT Q = CSP (Il) <m CSp (T2)

~

Reason: substitute pp-definitions (Jeavons, 1998)

Ix N\ Ri(xi) <= 3IxN\;3yi Njiy Sion (X3, ¥i) © i)
< Ixy A\, Se((xy) o )

PO|T Ql == POlT Q2 — CSP (Il) =m CSP (I2) J
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CSP dichotomy conjecture

Fix a CSP template T.

Time complexity
CSP (T) is always in NP, some CSP's are in P. J
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CSP dichotomy conjecture

Fix a CSP template T.

Time complexity
CSP (T) is always in NP, some CSP's are in P.

CSP dichotomy conjecture (Feder/Vardi, 1998)

Schaefer, 1978: |T| =2 = CSP(T) in P xor NP-complete.
Conjecture: This extends to all finite domains.
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CSP dichotomy conjecture

Fix a CSP template T.

Time complexity
CSP (T) is always in NP, some CSP's are in P.

CSP dichotomy conjecture (Feder/Vardi, 1998)

Schaefer, 1978: |T| =2 = CSP(T) in P xor NP-complete.
Conjecture: This extends to all finite domains.

CSP dichotomy conjecture holds for. . .
| T| = 2 Schaefer, 1978
| T| = 3 Bulatov, 2006
| T| = 4 Markovic et.al., 2011-12
5 <|T| <7 Myk, 2016

v
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Making connection with centraliser clones

T a finite algebra of finite signature

HomAlg(T) Feder/Madelaine/Stewart, 2004
Instance: A of the same signature as T
Question: Hom (A, T) # (7
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Making connection with centraliser clones

T a finite algebra of finite signature

HomAlg(T) Feder/Madelaine/Stewart, 2004
Instance: A of the same signature as T
Question: Hom (A, T) # (7

Lemma for G, H with 1 bin rel FMS
Hom (G, H) # 0 <= Hom (X2 (G), A2 (H)) # 0
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Making connection with centraliser clones

T a finite algebra of finite signature

HomAlg(T) Feder/Madelaine/Stewart, 2004

Instance: A of the same signature as T
Question: Hom (A, T) # (7

Lemma for G, H with 1 bin rel
Hom (G, H) # 0 <= Hom (X2 (G), A2 (H)) # 0

FMS

Corollary for H with 1 bin rel
CSP (H) <m HomAlg (X2 (H))

FMS
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Making connection with centraliser clones

T a finite algebra of finite signature

HomAlg(T) Feder/Madelaine/Stewart, 2004

Instance: A of the same signature as T
Question: Hom (A, T) # (7

Lemma for G, H with 1 bin rel FMS
Hom (G, H) # 0 <= Hom (X2 (G), A2 (H)) # 0

Corollary for H with 1 bin rel FMS
CSP (H) <m HomAlg (X2 (H))

Theorem for any rel template R FMS

CSP(R) =r CSP (H (R)) =7 HomAlg (A2 (H (R)))
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Consequences

dux(C)

= class C of decision problems enjoys a
P vs NP-complete complexity dichotomy.
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HomAlg (A) =, CSP ((A; F*))
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Consequences

ux(C)
= class C of decision problems enjoys a
P vs NP-complete complexity dichotomy.

From the constructions by Feder/Madelaine/Stewart

dux (HomAlg) —

duvx (HomAlg with 2 unary ops) —

dux (CSP with 1 bin rel) =

dux (CSP any rel signature) —

dux (CSP with function graphs) =

dux (CSP with graphs of unary functions) —
dux (CSP with graphs of 2 unary functions) —-
dux (HomAlg with 2 unary ops)

Theorem for A = (A; F) with F C O(ASI) FMS
HomAlg (A) =, CSP ((A; F*))




Interpretation

Bad news

Establishing dichotomy for CSP with function graphs (even
only of 2 unary ops) is as bad as as establishing dichotomy
for the whole relational CSP.
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Interpretation

Bad news

Establishing dichotomy for CSP with function graphs (even
only of 2 unary ops) is as bad as as establishing dichotomy
for the whole relational CSP. |

Good news
To get dichotomy for the whole relational CSP it suffices to
have it for CSP with function graphs (even only of 2 unary

ops).
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Interpretation

Bad news

Establishing dichotomy for CSP with function graphs (even
only of 2 unary ops) is as bad as as establishing dichotomy
for the whole relational CSP.

Good news
To get dichotomy for the whole relational CSP it suffices to
have it for CSP with function graphs (even only of 2 unary

ops).

Complexity of CSP ((A; F*)) determined by Pols F* = F*. |
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Thus, let's come back to centraliser clones. . .
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Thus, let's come back to centraliser clones. . .

... I am not going to solve CSP-dichotomy,
though.
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What | am going to do
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What | am going to do
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What | am going to do

| have a dream
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What | am going to do

| want to prove
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What | am going to do

| want to prove a

Theorem

Al=k >3 = VYFeCa: F=FR"
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What | am going to do

| want to prove a
Theorem, perhaps

Al=k >3 = VYFeCa: F=FR"
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What | am going to do

| want to prove a
Theorem, perhaps, some day

Al=k>3 = VYFeCy: F=FR"
(Burris-Willard conjecture)
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What | am going to do

| want to prove a
Theorem, perhaps, some day, but not today. ..

Al=k>3 = VFeCy: F=FR"
(Burris-Willard conjecture)
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What | am going to do

| want to prove a
Theorem today. ..

Al =k>3 = VFeCa: F=FK)"
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STOP

FASTEN
YOUR

@/
SEAT BELTS




A lemma on invariant relations

Q CRa 0€Ra
For m > |o| TFAE
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A lemma on invariant relations

Q CRa 0€Ra
For m > |o| TFAE
Q o€ lnvaPola Q (0 is pp-definable)
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A lemma on invariant relations

Q CRa 0€Ra

For m > |o| TFAE
Q o€ lnvaPola Q (0 is pp-definable)
@ o< lnvyPol{”Q
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A lemma on invariant relations

Q CRa 0€Ra
For m > |o| TFAE
Q o€ lnvaPola Q (0 is pp-definable)

@ o< lnvyPol{”Q

Proof (sketch)

@ Invyu PoI(Am)Q = Invy4 PoI(ASm)Q

o If p ¢ InvaPoly Q, ie. Pols {0} 2 Pola Q, then
df €Poly Q: f Po.

e If f is a counterexample of large arity (> m),
identification of variables gives a counterexample f of
smaller arity
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Corollaries

Generally
Let k := |A|. J
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Corollaries

Generally
Let k := |A|.

Corollary 1 for ¥ C 04y

0> k" = o) = 5O

Proof: Let £ € O then |f*| = |A"] = k" < ¢
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Corollaries

Generally
Let k := |A|.

Corollary 1 for ¥ C 04y

0> k" = o) = 5O

Proof: Let £ € O then |f*| = |A"] = k" < ¢
fex™
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Corollaries

Generally
Let k := |A|.

Corollary 1 for ¥ C 04y
0> kn = ) = 50"

Proof: Let £ € O then |f*| = |A"] = k" < ¢

feY" «<— f*c Inv4 Poly 2°
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Corollaries

Generally
Let k := |A|.

Corollary 1 for ¥ C 04y
0> kn = ) = 50"

Proof: Let £ € O then |f*| = |A"] = k" < ¢
feY" «<— f*c Inv4 Poly 2°

— f* clnvaPol{)x"
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Corollaries

Generally
Let k := |A|.

Corollary 1 for ¥ C 04y

0>k = T = 50"

Proof: Let £ € O then |f*| = |A"] = k" < ¢
feY" «<— f*c Inv4 Poly 2°
— f* clnvaPol{)x"

— fc (Polﬁf)Z')*
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Corollaries

Generally
Let k := |A|.

Corollary 1 for ¥ C 04y

0>k = T = 50"

Proof: Let £ € O then |f*| = |A"] = k" < ¢
feX™ <« f*clnvyPols°
— f* clnvaPol{)x"
= fe(Polf)zr) = ()
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Corollaries (continued)

Corollary 2 for ¥ C Op, n € IN,
(> k=1 = Iy Pol,y £ = Inv{ 5+ J

M. Behrisch Centralisers in algebra and elsewhere



Corollaries (continued)

Corollary 2 for ¥ C Op, n € IN,

(> k=1 = Iy Pol,y £ = Inv{ 5+

Proof: Let o C A", then |o| < k"—1</
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Corollaries (continued)

Corollary 2 for ¥ C Op, n € IN,

(> k=1 = Iy Pol,y £ = Inv{ 5+

Proof: Let o C A", then |o| < k"—1</

0 € IV Pol, =°
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Corollaries (continued)

Corollary 2 for ¥ C Op, n € IN,

(> k=1 = Iy Pol,y £ = Inv{ 5+

Proof: Let o C A", then |o| < k" —1</

o€ IV Pol T — p e InvlPolPse
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Corollaries (continued)

Corollary 2 for ¥ C Op, n € IN,

(> k=1 = Iy Pol,y £ = Inv{ 5+

Proof: Let o C A", then |o| < k" —1</

o€ IV Pol,=* = pe InvPol{)® = Inv, £+
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Recall: for £ > k", n€ IN,.

yer() _ 50 vl Pol, ¢ = Inv{{) 5+
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Recall: for £ > k", n€ IN,.

() (o Iy Pols £* = Inv{{)x+()

v

Theorem (P&schel, 2013(7), unpublished)
VECOa: T = (D) NPols Qs

where
@ (%) is any closure (X); p C () C T**

@ Qc C v Poly G® for G C O,
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Recall: for £ > k", n€ IN,.

() (o Iy Pols £* = Inv{{)x+()

v

Theorem (P&schel, 2013(7), unpublished)
VECOa: T = (D) NPols Qs

@ (%) is any closure (X); p C () C T**

where

@ Qc C v Poly G® for G C O,

Corollary for (¥) =X
v = ¥ N Poly Qr = £(* N Poly Inv? Pol, £
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Recall: for £ > k", n€ IN,.

yer() _ 50 vl Pol, ¢ = Inv{{) 5+

v

Theorem (P&schel, 2013(7), unpublished)
VECOa: T = (D) NPols Qs

@ (%) is any closure (X); p C () C T**

where

@ Qc C v Poly G® for G C O,

Corollary for (¥) =X
v = ¥ N Poly Qr = £(* N Poly Inv? Pol, £

For k>4, F €Ca X =F* (> kk>k*
F=yx*
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Recall: for £ > k", n€ IN,.

yer() _ 50 vl Pol, ¢ = Inv{{) 5+

v

Theorem (Pdschel, 2013(7), unpublished)
VECOa: T = (D) NPols Qs

@ (%) is any closure (X); p C () C T**

where

@ Qc C v Poly G® for G C O,

Corollary for (¥) = X
v = ¥ N Poly Qr = £(* N Poly Inv? Pol, £

For k>4, F€Ca, X =F* (> kk>k*
F=yx"=5"%"nPolInvi) Pol, £*
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Recall: for £ > k", n€ IN,.

yer() _ 50 vl Pol, ¢ = Inv{{) 5+

v

Theorem (Pdschel, 2013(7), unpublished)
VECOa: T = (D) NPols Qs

where
@ (%) is any closure (X); p C () C T**

@ Qc C v Poly G® for G C O,

Corollary for (¥) = X
v = ¥ N Poly Qr = £(* N Poly Inv? Pol, £

For k>4, F€Ca, X =F* (> kk>k*
F=yx"=5"%"nPolInvi) Pol, £*

(0*(R*

= N Pol g Inv{) sy
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Recall: for £ > k", n€ IN,.

yer() _ 50 vl Pol, ¢ = Inv{{) 5+

v

Theorem (Pdschel, 2013(7), unpublished)
VECOa: T = (D) NPols Qs

where
@ (%) is any closure (X); p C () C T**

@ Qc C v Poly G® for G C O,

Corollary for (¥) = X
v = ¥ N Poly Qr = £(* N Poly Inv? Pol, £

For k>4, F€Ca, X =F* (> kk>k*
F=yx"=5"%"nPolInvi) Pol, £*

(0*(R*

= N Pol g Inv{) sy

«(k)*
= FO™7 4 pol Inv ) O
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Finally

For F €Cx 0> kK, k>4, let G := FO™
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Finally

For F €Cx 0> kK, k>4, let G := FO™
Note GO — FOO _ pex0 _ rv® _ £(0 Thus

(k)*

e x(k)*
F=F® ﬁPolAlnv%)F(@ _ go*® ﬂPolAInv(;)G(é) -G

y
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Finally

For F €Cx 0> kK, k>4, let G := FO™
Note GO — FOO _ pex0 _ rv® _ £(0 Thus

(k)*

F = FO™ Y Apol, v FO = 6O Apol, v 6O = 6.

Characterisation
For n > k TFAE
@ VFECa: F=FN™
o VF€Ca: F*=FW NPoly Qo)
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Finally

For F €Cx 0> kK, k>4, let G := FO™
Note GO — FOO _ pex0 _ rv® _ £(0 Thus

(k)*

F = FO™ Y Apol, v FO = 6O Apol, v 6O = 6.

Characterisation
For n > k TFAE
@ VFECa: F=FN™
o VF€Ca: F*=FW NPoly Qo)

Corollary for F € Cx

F* = F(* Pol 4 Q<F(kk)>
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Discussion

We used
VFeCa: F*=F®O NPoly QF,
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Discussion

We used
VFEeCa: F*=FR NPolyQF, Qr C IV Pol, F*
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Discussion

We used

VFeCs: F*=FR NPolsQr, Qr C Invl) Pol, F*
“from the dual side” ~» kX
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Discussion

We used

VFeCa: F*=FR NPolsQF, Qr C Invl) Pol, F*
“from the dual side” ~» kX

V.

We could also exploit
VFeCa: F*=F® NPoly Qe
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Discussion

We used

VFeCs: F*=FR NPolsQr, Qr C Invl) Pol, F*
“from the dual side” ~» kX

V.

We could also exploit
VFeCa: F*=F® NPoly Qe

and try to reduce the arity from n = k*
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Discussion

We used

VFeCs: F*=FR NPolsQr, Qr C Invl) Pol, F*
“from the dual side” ~» kX

V.

We could also exploit
VFeCa: F*=F® NPoly Qe

and try to reduce the arity from n = k*
—> Requires understanding of Qf.
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Commutation of binary operations
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Commutation of binary operations

Does the following equation hold?

flet vy )alf ,a ) =
gf(t  f ) fly .a ))?
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Commutation of binary operations

Does the following equation hold?

f(g(thanks,your), g(for, attention)) ~
g(f(thanks, for), f(your, attention))?
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