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Non-associative residuated lattices [Galatos—Ono. APAL 2010]

A pointed residuated lattice-ordered groupoid with unit A is algebra of
atype Lsp = {&,\,/, A, V,0,1}:

@ (A, A, V) is a lattice

@ (A, &,1) is a groupoid with unit 1

@ for each x,y,z € A:

x&y<z IFF x<z/y IFF y<x\z

For simplicity we will speak about SL-algebras

SL-algebras form a variety, we will denote it as SL.
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Notable examples

@ FL-algebras = pointed residuated lattices = ‘associative’
SL-algberas

@ Algebras of relations, where & is relational composition and
R\ S = (R& R S/R=(5&R)

@ /-groups, where a\b=a'&bandb/a=b& a"!
@ Powersets of monoids, where

X\Y={z|X&{} S}  ¥/X={z|{z3&xCV}

@ Idealsofaring ...
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Classes of residuated structures

Any quasivariety of SL-algberas with possible additional operators will
be called a class of residuated structures
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Classes of residuated structures

Any quasivariety of SL-algberas with possible additional operators will
be called a class of residuated structures

@ Subvariets of SL, where & is associative, commutative,
idempotent, divisible, etc.

@ Integral SL-algebras: those where 1 is a top element of A

@ Semilinear classes (those generated by their linearly ordered
members)

@ Hajek’s BL-algebras (associative, commutative, integral, divisible,
semilinear SL-algebras)

@ MV-algebras (BL-algebras where (x — 0) — 0 = x)
@ Boolean algebras (idempotent MV-algebras)

Plus any of these with additional operators ...
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9 Substructural logics

Petr Cintula (ICS CAS)

Substructural Logics



A short dictionary

Logic Algebra

language £ type

set of formulas Fm, set of terms

Lindenbaum algebra Fm, term algebra of type £
L-substitution o endomorphism Fm, — Fm,
A-evaluation e homomorphism Fm, — A
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What is a logic? (as a mathematical object, for us in this talk)
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What is a logic? (as a mathematical object, for us in this talk)

Definition
A logic L is an algebraic closure operator C on Fm/ s.t. for each
substitution o:

a[C(T)] € C(o[T)
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What is a logic? (as a mathematical object, for us in this talk)

Definition
A logic L is an algebraic closure operator C on Fm/ s.t. for each
substitution o

a[C(T)] € C(o[T)

Definition

A logic L is a finitary structural consequence relation, i.e., a relation

between sets of formulae and formulae s.t.:
@ T, oL (Reflexivity
o IfStrvand T,v kL p, then T, S (Cut
@ If T i ¢, then o[T] kL o(p) for each substitution o (Structurality
@ If T ¢, then there is a finite 7/ C T such that 77 - ¢ (Finitarity

—_ — — ~—

v
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Axiomatization
Axiomatic system AS if given by a set of
@ axioms Ax, i.e. a set formulas closed under arbitrary substitution,
@ rules Ru, i.e. a set of pairs Tr>¢ for some finite set T U {¢} C Fm,
(again closed under arbitrary substitution)

Proof: of a formula ¢ from a set of formulae T in AS is a finite

sequence of formulas 1, ..., @, s.t.

@ ¢, = p and for each i < n either ¢; € AXUT or

@ thereisasetS C {¢1,...,pi—1} and a rule S>¢; € Ru.
Theorem

We write T -A° ¢ if there is a proof of ¢ from T in AS.
A4S s the least logic L such that

@ () L ¢ for each p € Ax
@ Sty ¢ foreach S>¢ € Ru
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The logic of SL-algebras

Theorem
The relation kg1, defined as:
ThFsLp

iff {YAN1=1|9peTtEsLpAlxl
is a logic.
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The logic of SL-algebras

Theorem

The relation kg1, defined as:

ThsL e
is a logic.

i {$=1]peT) o p>1
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Axiomatization SL for SL [Galatos—Ono. APAL, 2010]

Axioms:

AP\ @ AP\ X\ AN\ (X \ A7)
e\ oV v\ VY @\ XA\ )\ (VY \x)
o\ (W /e)\¥) v\ (e\e&y) (x/e)ANKX/P)\(x/eVY)
1 1\ (¢ \ p) e\ (1\yp)

Rules:

{0\ v} > {e} > (p\ )\ v

{e\W\ I\ (x/9)  {v/pt>e\¢Y
e\ W\ )\ (e\x)  {L\x3 > (e\¥)\(p\X)
{9}y W\ @\ > e&v\x
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A formal definition of substructural logics

¢ —1 instead of ¢\ ¢

Wewrite |y instead of (p — ¥) A (¥ — o)
Definition
A logic L in a language £ is a substructural logic if

@ LD Lg,

o lfT l_SL ©, then T I_L ()
@ for each n, i < n, and each n-ary connective ¢ € £\ Lg holds:

poYhLelX, X @ Xn) & c(Xts - Xis ¥y - -5 Xn)

Note: the last condition can be prove for all connectives of Lsp.
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From substructural logics to
classes of residuated structures

Theorem

LetL be a substructural logic. An L-algebra A is an L-algebra, A € Q,
whenever

@ its Lsy -reduct is an SL-algebra and
Q Tty pimpliesthat{y) >1 |y T} Eap>1

Then Q. is a class of residuated structures and

Trre ff {v>1|¢YeTtEq ¢>1
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From substructural logics to
classes of residuated structures and back

Theorem

Let Q be a class of residuated structures of type L O Lsy. Then the
relation Lq defined as:

Thi e iff {219 eTtEqp>1
is a substructural logic. And

EFqa~p iff {peod|e=y€eEir,aep
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It gets even better

Theorem

The operators Q, and L, are dual-lattice isomorphisms between the
lattice of substructural logics in language L and the lattice of
subquasivarieties of SL-algebras with operators L\ Lgy .
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It gets even better

Theorem

The operators Q, and L, are dual-lattice isomorphisms between the
lattice of substructural logics in language L and the lattice of
subquasivarieties of SL-algebras with operators L\ Lgy .

pFLe Al &1 A1 1L @

p=YEQ(peoP)ANI=1  (poY)ANlI=lEge=yY
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It gets even better

Theorem

The operators Q, and L, are dual-lattice isomorphisms between the
lattice of substructural logics in language L and the lattice of
subquasivarieties of SL-algebras with operators L\ Lgy .

pFLe Al &1 A1 1L @
erYEg (pe ) A1xr1 () AN1=1Eg e~

Note: all these results are just particularization of know facts of
Abstract Algebraic Logic (AAL)
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Examples of substructural logics

@ Ono’s substructural logics including classical and intuitionistic logic

@ expansions by additional connectives, e.g. (classical) modalities,
exponentials in linear logic and Baaz’s Delta in fuzzy logics
@ NOT IN THIS TALK: the fragments of the logics above to

languages containing implication, such as BCK, BCI, psBCK,
BCC, hoop logics, etc.

Petr Cintula (ICS CAS) Substructural Logics 17 /49



Examples of substructural logics

@ Ono’s substructural logics including classical and intuitionistic logic

@ expansions by additional connectives, e.g. (classical) modalities,
exponentials in linear logic and Baaz’s Delta in fuzzy logics

@ NOT IN THIS TALK: the fragments of the logics above to
languages containing implication, such as BCK, BCI, psBCK,
BCC, hoop logics, etc.

usual name | s axioms
associativity | a (o &) & x < & (Y & x)

Special axioms:  exchange |e @&y =&y
contraction | ¢ p— &

weakening |w p &y —yand0— ¢

Logic given by these axioms; let X C {e, c, w} we define logics
@ SLy axiomatized by adding axioms from X of those of SL

@ FLy axiomatized by adding associativity to SLy
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Outline

e Generalized disjunctions and proof by cases
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Proof by cases

For classical or intuitionistic logic we have:

Fawl_LX

Loy x
Fu{eVvey} L x
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Proof by cases
For classical or intuitionistic logic we have:

Fawl_LX Fawl_LX
Fu{pVvylkLx

Butin FL. it would entail o V¢ Fg, (0 A1)V (¥ A1), e,

(SOW#)AI“I ):QFLe (90/\1)\/(1/}/\1) ~1
which can be easily refuted
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Proof by cases
For classical or intuitionistic logic we have:

Fawl_LX Fawl_LX
Fu{pVvylkLx

Butin FL. it would entail o V¢ Fg, (0 A1)V (¥ A1), e,

(90\/1#)/\1%1 ):QFLe (90/\1)\/(1/}/\1) ~1
which can be easily refuted

On the other hand we can show that:

Lo Fr X I Free
Fu{leAl) Vv (A1)} FrL, x
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Proof by cases
For classical or intuitionistic logic we have:

Fawl_LX Fadjl_LX
Fu{pVvylkLx

Butin FL. it would entail o V¢ Fg, (0 A1)V (¥ A1), e,

(pVy)nl=1 ):QFLe A V(AL =1
which can be easily refuted
On the other hand we can show that:

o bFpL, x I PR, X
FU{(e AV (@A)} e, X
Results in this section are from: Czelakowski. Protoalgebraic Logic,

2000 and C—Noguera. The proof by cases property and its variants in
structural consequence relations. Studia Logica, 2013.
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Generalized disjunctions

Let V(p,q, 7) be a set of formulas. We write
oV = J{V(p, 9, d) | o € Fmz“}.

Definition
V is a p-disjunction if:

(PD) @hFL VY and kL VY
(PCP) T'pkLx and T,¢kpx implies T, oVy kL x

Definition
A logic L is a p-disjunctional if it has a p-disjunction.

We drop the prefix ‘p-’ if there are no parameters 7 in V
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Separating examples
Example

@ V is a disjunction in FL.y,

@ Vs not a disjunction in FL,
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Separating examples

Example
@ V is a disjunction in FL.y,
@ Vis not a disjunction in FL,, but (p A1) V (g A1) is
@ No single formula is a disjunction in G_,
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Separating examples

Example
@ V is a disjunction in FL.y,
@ Vis not a disjunction in FL,, but (p A1) V (g A1) is

@ No single formula is a disjunction in G_,
but the set {(p — q¢) — ¢q,(¢ — p) — p}is
@ No finite set of formulas is a disjunction in K
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Separating examples

Example
@ V is a disjunction in FL.y,
@ Vis not a disjunction in FL,, but (p A1) V (g A1) is

@ No single formula is a disjunction in G_,
but the set {(p — q) — ¢,(q — p) — p}is
@ No finite set of formulas is a disjunction in K
but the set {O0"p v O"q | n,m > 0} is
@ No set of formulas in two variables is a disjunction in IPC_,
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Separating examples

Example
@ V is a disjunction in FL.y,
@ Vis not a disjunction in FL,, but (p A1) V (g A1) is
@ No single formula is a disjunction in G_,
but the set {(p — ¢) = ¢,(¢ — p) = p}is
@ No finite set of formulas is a disjunction in K
but the set {O0"p v O"q | n,m > 0} is

@ No set of formulas in two variables is a disjunction in IPC_,

but the formula (p —r) - ((g —r) — r)isa p-disjunction.l
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Separating examples

Example
@ V is a disjunction in FL.y,
@ Vis not a disjunction in FL,, but (p A1) V (g A1) is
@ No single formula is a disjunction in G_,
but the set {(p — ¢) = ¢,(¢ — p) = p}is
@ No finite set of formulas is a disjunction in K
but the set {O0"p v O"q | n,m > 0} is

@ No set of formulas in two variables is a disjunction in IPC_,

but the formula (p —r) - ((g —r) — r)isa p-disjunction.J

Conjecture: The logics SL and FL are not disjunctional;
later we show that they are p-disjunctional
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A little detour to AAL 1: filters

Definition

Let L be a substructural logic in £ and A be an L-algebra. Aset F C A
is called L-filter on A if:

T . ¢ implies that for each A-evaluation e if ¢[T] C F then e(¢) € F

@ If the Lgi.-reduct of A is an SL-algebra then:
A is an L-algebra IFF the set [1) is an L-filter

If A is an L-algebra, then [1) = {x € A | 1 < x} is the least L-filter

Filters on A form an algebraic closure system
by Fi(X) we denote the filter generated by X

Filters on Fm, are the closure system corresponding to L

When seen as a lattice they are isomorphic to the lattice of
Q-relative congruences on A
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Filters in p-disjunctional logics
Theorem

LetL be a logic with a p-disjunction V. Then for each L-algebra A and
eachX,Y U {x,y} C A:

Fi(X,x) NFi(X,y) = Fi(X,xV4y)
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Filters in p-disjunctional logics
Theorem

LetL be a logic with a p-disjunction V. Then for each L-algebra A and
eachX,Y U {x,y} C A:

Fi(X) NFi(Y) = Fi({aVAb |a € X,b € Y})
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Filters in p-disjunctional logics

Theorem

LetL be a logic with a p-disjunction V. Then for each L-algebra A and
eachX,Y U {x,y} C A:

Fi(X) NFi(Y) = Fi({aVAb |a € X,b € Y})

Theorem

Let L be a substructural logic. TFAE:
@ L is p-disjunctional
© The lattice of all L-filters on any L-algebra is distributive
© Qv is relative-congruence-distributive

Corollary
For each subvariety V of SL, Ly is p-disjunctional logic
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A little detour to AAL 2: RFSI algebras

Let us by Qgrgs1 denote that class of Q-relatively finitely subdirectly
irreducible (RFSI) L-algebras. We know that:

ThL @ iff {v21]YeT} FQuws ¢ =1

A € (Qu)resi iff the the filter [1) is finitely meet irreducible, i.e.,
there is no pair of filters F,G D [1) s.t. FNG = [1).
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V-prime filters

Definition

A filter F on A is V-prime if for every a,b € A, aVAb C F impliesa € F
orbeF.|

Theorem

Let V be a p-disjunction in L and A and L-algebra. Then A € (QL)rgs1
iff the filter [1) is V-prime.

Proof:

Assume that A is not RFSI: there are F; D [1) s.t. [1) = F; N F,. Let
a; € F;\ [1). Thus a;Va, C Fj, i.e., [1) is not V-prime
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V-prime filters

Definition

A filter F on A is V-prime if for every a,b € A, aVAb C F impliesa € F
orbeF.|

Theorem

Let V be a p-disjunction in L and A and L-algebra. Then A € (QL)rgs1
iff the filter [1) is V-prime.

Proof:
Assume that A is not RFSI: there are F; D [1) s.t. [1) = F; N F,. Let
a; € F;\ [1). Thus a;Va, C Fj, i.e., [1) is not V-prime
Assume that [1) is not V-prime: there are x,y #? 1 s.t. xVy C [1). Then
Fi(x),Fi(y) D [1) and:
[1) = Fi(xVy) = Fi(x) N Fi(y) i.e., A is not RFSI.
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A little detour to AAL 3: simple observations

Let AX be an axiomatic system of a logic L, then F is an L filter iff
it is an upset containing 1 and for each rule 7>y we have:

for each A-evaluation e if ¢[T] C F then e(p) € F

L + A is the extension of L by axioms from A.

QL+ 4 is a relative subvariety of Q. axiomatized by {¢ > 1| ¢ € A}
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Positive universal formulas

A positive universal formula is built from equations using conjunction
and disjunction.

Lemma (Galatos. Studia Logica, 2004)

A positive universal formula C is equivalent the formula \/ 1< ¢
pEFc

Lemma

Let L be a logic, V a p-disjunction, C a positive universal formula, and
A an L-algebra.

@ IfA |=C,thene] V ¢] > 1 for each A-evaluation e.
peFc
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Positive universal formulas

A positive universal formula is built from equations using conjunction
and disjunction.

Lemma (Galatos. Studia Logica, 2004)

A positive universal formula C is equivalent the formula \/ 1< ¢
pEFc

Lemma

Let L be a logic, V a p-disjunction, C a positive universal formula, and
A an L-algebra.

@ IfA |=C,thene] V ¢] > 1 for each A-evaluation e.
peFc

@ Furthermore, if [1) a V-prime, then the converse holds as well.
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Logics given by positive universal classes of algebras

Theorem

LetL be a logic with a p-disjunction V and C a set of positive universal
formulas. Then:

LQ(a anL-algebra | Acy) =L + {(pZT p|CeC}.
z

Proof
WesetL' =L+ { VF ¢|CeC};U={AanL-algebra |A = C}.
pelc

Clearly U € Qr/, s0 Q(U) € Qs and so L' € Lo.

Conversely, assume that Tt/ ¢. There is an A € (Qr/)rrs1 Where [1) a
V-prime (because L' is axiomatic extension of L and so V is
p-disjunction in L’) and an A-model of T s.t. e(y) # 1.

ThenA € Uand so T L, ¢, i-€. Lou) € L.
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Quasivarieties given by positive universal classes of
algebras

Corollary

Let L be a logic with a p-disjunction V. The quasivariety generated by

the class of L-algebras satisfying a set of positive universal formulas C
is axiomatized (relative to Q) by:

{p>1]|CeCandpe V ¥}
YeFC

Note that the axiomatized quasivariety is relative subvariety.
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Quasivarieties given by positive universal classes of
algebras

Corollary

Let L be a logic with a p-disjunction V. The quasivariety generated by

the class of L-algebras satisfying a set of positive universal formulas C
is axiomatized (relative to Q) by:

{p>1]|CeCandpe V ¥}
YeFC

Note that the axiomatized quasivariety is relative subvariety.

A remark: this result can be generalized to Qvs generated by classes
of RFSI L-algebras satisfying a set of disjunctions of quasiequations.
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Intersection of relative subvarieties

Corollary

LetL be a logic with a p-disjunction V. The join of two relative
subvarieties Qp axiomatized (relative to Qp) by £ and &, is
axiomatized (relative to Q) by:

{x21|pi =1 €&, €8, andx € (o1 < $1)V(p2 < 12)} |

Note that it is the join both in the lattice of subquasivarieties and
relative subvarieties

Proof

Assume that the set of variables of £; and &, are disjoint.
ThenA € Q UQ, iffA = (w1 = 1) V (2 = 1)) for each

prRYEELP R Y €&
Now all we need is: SL = (p = ¢) & (¢ < ¢) > 1
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Outline

@ On the importance of having a nice axiomatic system
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First, the simple case

Theorem (C—Noguera. Studia Logica, 2013)

Let L be a substructural logic with an axiomatic system having rules
Ru and let V(p,q, 7) be a set of formulas such that

erLeVY YLV Ve lL VY VoL ¢
Then V is a p-disjunction in L iff for each x and each Tr>¢ € Ru:

{¥Vx | € T} FL VX

Corollary

Let Ly be a substructural logic with a p-disjunction V and let L be
axiomatized by adding rules Ru to any axiomatic system of Ly.
Then V is a p-disjunction in L iff for each x and each Tt>¢ € Ru:

{¥Vx | Y €T} L 9V
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Second, a bit more tricky

Let us consider the following rules:

(MP) ¢, = > 1 modus ponens

(Ad)) p>pAl unit adjunction

(PN) o> Aa(p) > palp) product normality
where

@ a left conjugate of pis Ao (¢) = (@ \ p & a) A1
@ aright conjugate of ¢ is po(¢) = (& ¢ /a) A1

Theorem (Folklore)

Logic The only rules needed in its axiomatization
FL., ~modus ponens

FL. modus ponens and unit adjunction

FL modus ponens and product normality
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What about SL?

We need more conjugates:

ase(p) = (& e\ & (e &)
a5(p) = (0&e\ (6&p) &e)
Bse(p) = 0\ (e\ (e &) & )
Bse(p) = (0\ (6 &e) &y /e)

And rules of the form:
© > N5.()
forne{a,d, 5,0}
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What about SL?

We need more conjugates:

ase(p) = (& e\ & (e &)
a5(p) = (0&e\ (6&p) &e)
Bse(p) = 0\ (e\ (e &) & )
Bse(p) = (0\ (6 &e) &y /e)

And rules of the form:
© > N5.()

forne{a,d, 5,0}

For the proof see: C—Horcik—Noguera. Non-associative substructural
logics and their semilinear extensions: Axiomatization and
completeness properties. The Review of Symbolic Logic, 2013
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Conventions

Let us consider a new propositional variable x
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Conventions

Let us consider a new propositional variable x

We write §(¢) for a formula resulting from ¢ by replacing all x by .

Definition (lterated I'-formulae)

Let I" be a set of x-formulae. We define the sets of x-formulae I'* as
the smallest set s.t. :

@ x eI,
@ §(x) € I'* for each § € T and each y € I'*.
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Conventions

Let us consider a new propositional variable x

We write §(¢) for a formula resulting from ¢ by replacing all x by .

Definition (lterated I'-formulae)

Let I" be a set of x-formulae. We define the sets of x-formulae I'* as
the smallest set s.t. :

@ x eI,
@ §(x) € I'* for each § € T and each y € I'*.

The rest of this section is based on C—Hor¢ik—Noguera. RSL, 2013
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Main definition

Definition
L is almost (MP)-based w.r.t. a set of basic deduction terms bDT if it
has an axiomatic system where

@ there are no rules with three or more premises

@ there is only one rule with two premises: modus ponens

@ the remaining rules are from {¢ I x(¢) | ¢ € Fm x € bDT}

@ for each 8 € bDT there is 8’ € bDT* s.t.:

FL B'(0 = ) = (Blp) = B(¥))-

Petr Cintula (ICS CAS) Substructural Logics

36/49



Almost-Implicational Deduction Theorem

Definition (Conjuncted I'-formulae)

Let T be a set of x-formulae. We define the sets of x-formulae II(T") as
the smallest set containing I' U {1} and closed under &.

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
Then for each setT' U {p, ¢} of formulae:

TyobL ¢ iff  TFyd(p) — o forsome § € TI(bDT”).
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Filter generation

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
Then for each setT' U {p, ¢} of formulae:

L,pobL v iff T Fyd(e) — o forsomed € TI(bDT™).
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Filter generation

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
LetA be an L-algebra and X U {x} C A. Then

yEFil(X,x) iff y—yeFi(X) forsome s € (I(bDT*))* ().

M(x) = {6(x,a1,...,a,) | 6(*,p1,...,pn) €T and ay,...,a, € A}
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Filter generation

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
LetA be an L-algebra and X U {x} C A. Then
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Filter generation

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
LetA be an L-algebra and X U {x} C A. Then

yEFil(X,x) iff y—yeFi(X) forsome s € (I(bDT*))* ().

M(x) = {6(x,a1,...,a,) | 6(*,p1,...,pn) €T and ay,...,a, € A}
M (X) = (M ) | x € X})
Corollary

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
LetA be anL-algebra and X C A. Then

Fit (X) = {a € A | a >y for some y € (II(bDT*))*(X)}
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Disjunction in almost (MP)-based logics

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT.
Then

VL ={a(p) vV B(q) | o, B € (bDTU{x A 1})"}

is a (p-)disjunction in L.
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© semilinear logics
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Semilinear logics

Let us by Q{ denote the class of linearly ordered L-algebras.
Definition

A substructural logic L is called semilinear if

ThLe iff {y>1]peTtEyp21
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Semilinear logics

Let us by Q{ denote the class of linearly ordered L-algebras.

Definition
A substructural logic L is called semilinear if

ThLe iff {y>1]peTtEyp21

This section is based on C—Hor¢ik—Noguera. RSL, 2013

Note: some of the results hold in much wider setting.
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Characterizations of substructural semilinear logics

Theorem
LetL be a substructural logic. TFAE:
© L is semilinear
Q@ QL =0Q(Qf)
Q Qf = (Qu)resi
© EachL-algebra is a subdirect product of L-chains

@ Any L-filter in an L-algebra is an intersection of linear ones
afilter F is linear ifx — y € F ory — x € F, for each x,y

© The following metarule holds:

T,p =k x T,y — obLXx
Tl_LX
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Characterizations of substructural semilinear logics

Theorem

LetL be a substructural logic and an axiomatic system AX. TFAE:
@ L is semilinear,
©Q L proves (¢ — ) V (v — ) and enjoys the metarule:

Tolbux T,y
Tv ¥ \ lﬁ FL X
© L proves (¢ — 1) V (v — ) and any L-filter in an L-algebra is an
intersection of \/-prime ones,

Q L proves (¢ — 1) V (v — ¢) and for every rule Tt>p in AX and
propositional variable p not occurring in T, o we have

{pVx|peTtrLeVx
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Weakest semilinear extension

Theorem
@ There is the least semilinear logic extending L, denoted as L*
0 _
® L” =L
@ If L is almost (MP)-based with bDT, then L’ is axiomatized by
adding axioms:

((p—=Y)AN1) V(¥ = ¢) A1), foreach s € bDT U {x}

Corollary

Let Q be a class of residuated structures s.t. Lg is an almost
(MP)-based with bDT. Then Q({A € Q | A linear}) is a relative
subvariety of Q axiomatized (relative to Q) by

(g =)A1) V(Y = @) A1) =1, foreach s € bDTU {x}
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Characterizations of completeness properties

Let L be substructural semilinear logic and K a class of L-chains.

Theorem (Characterization of strong K-completeness)
@ ForeachTU{p} holds: T+ ¢ iff{y > 1| €T} EFx ¢ > 1.
Q QL= ISP, +(K).
© Each countable L-chain is embeddable into some member of K.

Theorem (Characterization of finite strong K-completeness)
@ Foreach finite T U {p} holds: Tt ¢ iff { > 1|y € T} Ex ¢ > 1.
Q@ QL =Q(K), i.e.,, K generates Q. as a quasivariety.

© Each finite subset of any L-chain is partially embeddable into an
element of K.
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Finite chain semantics

Let F be a class of finite chains

Theorem (Characterization of strong finite-chain completeness)
@ L enjoys the SFC,
@ AllL-chains are finite,
© There exists n € N such each L-chain has at most n elements,
© There exists n € N such that 0 i \/,_,,(xi = xi1).

Known results: FSFC fails in FL* and FL!
FSFC holds in FLy, ,,, and SL{

Open problems: FSFC of FL! and FL{,
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Standard completeness

Let R be a class of chains with domain ((half)-open) real unit interval
with usual lattice order

Known results: FSRC fails in FL! and FL
SRC holds in FL{, FL, FL{,, FLY . and SL§

cw?

SRC fails but FSRC holds in logic of BL- and MV-alg.

Open problems: (F)SRC of FL.,
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There is a nice bridge between logic and algebra . ..
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