Convex congruences

Ivan Chajda – Helmut Länger

Palacký University Olomouc, Olomouc, Czech Republic, email: ivan.chajda@upol.cz TU Wien, Vienna, Austria, email: helmut.laenger@tuwien.ac.at

Support of the research by the bilateral project entitled "New perspectives on residuated posets", supported by the Austrian Science Fund (FWF), Project I 1923-N25, and the Czech Science Foundation (GAČR), Project 15-34697L, is gratefully acknowledged.

54th Summer School on General Algebra and Ordered Sets, Trojanovice, Czech Republic, September 5, 2016

Contents:

- 1. Motivation
- 2. Preliminaries
- 3. Integral residuated posets
- 4. Convex congruences
- 5. References

1. Motivation

Chajda, Länger Convex congruencs 3 / 2

Motivation

Definition 1

- BCK-algebra = algebra $(A, \rightarrow, 1)$ of type (2, 0) satisfying
 - (A, \leq) is a poset $(x \leq y : \Leftrightarrow x \rightarrow y = 1)$
 - $x \rightarrow 1 \approx 1$
 - $1 \rightarrow x \approx x$
 - $x \to ((x \to y) \to y) \approx 1$
 - $(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) \approx 1$
- BCI-algebra = algebra $(A, \rightarrow, 1)$ of type (2, 0) satisfying
 - (A, \leq) is a poset $(x \leq y : \Leftrightarrow x \rightarrow y = 1)$
 - $1 \rightarrow x \approx x$
 - $x \to ((x \to y) \to y) \approx 1$
 - $(y \rightarrow z) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) \approx 1$

Definition 2

$$(A,\leq): poset \wedge \Theta \in \mathsf{Equ}\, A \Rightarrow$$

$$\Rightarrow (\Theta \ \textit{convex} : \Leftrightarrow (a, b, c \in A \land a \leq b \leq c \land a \Theta c \Rightarrow a \Theta b))$$

Chajda, Länger Convex congruencs 4 / 21

Motivation Preliminaries Residuated posets Convexity References

Motivation, continued

Remark 3

BCK- resp. BCI-algebras form a proper quasivariety and are therefore not closed under the formation of quotients.

Theorem 4

- (cf. [2]) \mathbf{A} BCK-algebra $\wedge \Theta \in \mathsf{Con} \mathbf{A} \Rightarrow$
 - \Rightarrow (A/ Θ BCK-algebra \Leftrightarrow Θ convex)
- **A** BCI-algebra $\wedge \Theta \in \mathsf{Con} \, \mathbf{A} \Rightarrow$
 - \Rightarrow (A/ Θ BCI-algebra $\Leftrightarrow \Theta$ convex)

4□ > 4□ > 4 = > 4 = > = 90

Chajda, Länger Convex congruencs 5 / 21

2. Preliminaries

Chajda, Länger Convex congruencs 6 / 21

Preliminaries

- $\mathbf{A} = (A, \rightarrow, 1)$: algebra of type (2, 0)
- $a, b, c \in A$
- $\Theta \in \mathsf{Con}\,\mathbf{A}$

Definition 5

- $a < b : \Leftrightarrow a \rightarrow b = 1$
- $[a]\Theta \leq' [b]\Theta :\Leftrightarrow [a]\Theta \to [b]\Theta = [1]\Theta$

Remark 6

- $a \le b \Rightarrow [a]\Theta \le' [b]\Theta$
- < reflexive \Rightarrow <' reflexive

◆ロト ◆園 ト ◆恵 ト ・恵 ・ めへで

Motivation Preliminaries Residuated posets Convexity References

Properties and identities

Definition 7

$$(x, y \in A \text{ and } [x]\Theta \le' [y]\Theta) \Rightarrow \exists z \in [x]\Theta : z \le y$$
 (1)

$$(x, y \in A \text{ and } [x]\Theta \le' [y]\Theta) \Rightarrow \exists z \in [y]\Theta : x \le z$$
 (2)

Definition 8

$$x \to 1 \approx 1$$
 (3)

$$1 \rightarrow x \approx x$$
 (4)

(5)

$$x \to ((x \to y) \to y) \approx 1$$

$$(x \to y) \to ((y \to z) \to (x \to z)) \approx 1$$
 (6)

$$(y \to z) \to ((x \to y) \to (x \to z)) \approx 1$$
 (7)

Chajda, Länger Convex congruence 8 / 21

Examples and relations between properties

Example 9

- **A** BCK-algebra \Leftrightarrow (A, \leq) poset \land $(3) \land (4) \land (5) \land (6)$
- **A** BCI-algebra \Leftrightarrow (A, \leq) poset \land $(4) \land (5) \land (7)$

Lemma 10

- $(2) \Rightarrow (5)$
- $(4) \land (5) \Rightarrow (2)$
- $(4) \land (5) \Rightarrow (6)$
- $(4) \land (5) \Rightarrow (7)$
- $(4) \land (6) \Rightarrow (A, \leq)$ quoset
- $(4) \land (7) \Rightarrow (A, <)$ quoset

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Chajda, Länger Convex congruencs 9 / 21

3. Integral residuated posets

Chajda, Länger Convex congruencs 10 / 21

Integral residuated posets

Definition 11

 $(A, \leq, \cdot, \rightarrow, 1)$ integral residuated poset : \Leftrightarrow

- (A, \leq) : poset
- $(A, \cdot, \rightarrow, 1)$: algebra of type (2, 2, 0)
- $(A, \cdot, 1)$: commutative groupoid with neutral element 1
- *x* ≤ 1
- $xy \le z \Leftrightarrow x \le y \to z$.

Lemma 12

 $(A, \leq, \cdot, \rightarrow, 1)$ integral residuated poset \land a, $b \in A \Rightarrow$

- $a < b \Leftrightarrow a \rightarrow b = 1$
- $a < b \Leftrightarrow a < 1 \rightarrow b$
- **●** (4) ∧ (5)

Example of an integral residuated posets neither being a BCK- nor a BCI-algebra

Example 13

$$A = \{a, b, c, 1\}, a < b < c < 1$$

 \Rightarrow **A** = $(A, \leq, \cdot, \rightarrow, 1)$ integral residuated poset

Chajda, Länger Convex congruence 12 / 21

Example 13, continued

Example 14

- $(c \rightarrow b) \rightarrow ((b \rightarrow a) \rightarrow (c \rightarrow a)) = c \rightarrow (b \rightarrow a) = c \rightarrow b = c \neq 1 \Rightarrow \neg(6) \Rightarrow \mathbf{A} \text{ not a BCK-algebra}$
- $(b \rightarrow a) \rightarrow ((c \rightarrow b) \rightarrow (c \rightarrow a)) = b \rightarrow (c \rightarrow a) = b \rightarrow a = b \neq 1 \Rightarrow \neg(7) \Rightarrow$ **A** not a BCI-algebra

Lemma 15

 $(A, \leq, \cdot, \rightarrow, 1)$ integral residuated poset $\land \Theta \in Con(A, \cdot, \rightarrow, 1) \Rightarrow (1)$

- (ロ) (個) (差) (差) (差) (2) (2) (2)

Chajda, Länger Convex congruencs 13 / 21

Motivation Preliminaries Residuated posets Convexity References

4. Convex congruences

Chajda, Länger Convex congruencs 14 / 21

Convex congruences

Lemma 16

 \leq' antisymmetric $\Rightarrow \Theta$ convex

Theorem 17

- $(A/\Theta, \leq')$ poset $\Rightarrow \Theta$ convex
- (A, \leq) poset $\Rightarrow \Theta$ convex

Chajda, Länger Convex congruencs 15 / 21

(A, \leq) poset $\Rightarrow \Theta$ convex

Example 18

•
$$A = \{a, b, 1\}$$

- $A = (A, \to, 1)$
- $\Theta = \{a, 1\}^2 \cup \{b\}^2$
- a < b < 1
- Θ not convex
- $\{b\} \le '\{a,1\} \le '\{b\} \Rightarrow \le '$ not antisymmetric

◆ロト ◆問 ト ∢ 恵 ト ◆ 恵 ・ 夕 Q (*)

Chajda, Länger Convex congruence 16 / 21

Characterization of convexity

Theorem 19

- (A, \leq) poset \land $(2) \Rightarrow ((A/\Theta, \leq')$ poset $\Leftrightarrow \Theta$ convex)
- (A, \leq) poset $\wedge \Theta$ convex $\Rightarrow (A/\Theta, \leq')$ poset

Example 20

•
$$A = (\{a, b, 1\}$$

- $\Theta = \{a\}^2 \cup \{b, 1\}^2$, a < b < 1, Θ convex
- $\{a\} \le '\{b,1\} \le '\{a\} \Rightarrow (A/\Theta, \le ')$ not a poset
- $[1]\Theta <' [a]\Theta \land 1 \not< a \Rightarrow \neg(2)$

←□ > ←□ > ←□ > ←□ >

Chajda, Länger Convex congruence 17 / 21

Characterizations of convexity, continued

Theorem 21

$$(A, \leq)$$
 poset \land $(1) \Rightarrow ((A/\Theta, \leq')$ poset $\Leftrightarrow \Theta$ convex)

Theorem 22

$$(A, \leq, \cdot, \rightarrow, 1)$$
 integral residuated poset $\land \Theta \in \mathsf{Con}(A, \cdot, \rightarrow, 1) \Rightarrow \Rightarrow ((A/\Theta, \leq', \cdot, \rightarrow, [1]\Theta)$ integral residuated poset $\Leftrightarrow \Theta$ convex)

Theorem 23

- \leq antisymmetric \wedge (4) \wedge ((6) \vee (7)) \Rightarrow (A, \leq) poset
- $(4) \land (5) \land ((6) \lor (7)) \Rightarrow ((A/\Theta, \leq') \text{ poset } \Leftrightarrow \Theta \text{ convex})$

Corollary 24

- (cf. [2]) A BCK-algebra \Rightarrow (A/ Θ BCK-algebra \Leftrightarrow Θ convex)
- **A** BCI-algebra \Rightarrow (**A**/ Θ BCI-algebra \Leftrightarrow Θ convex)

Chajda, Länger Convex congruencs 18 / 21

5. References

Chajda, Länger Convex congruencs 19 / 2

References

- I. Chajda and H. Länger, Convex congruences. Soft Computing (2016), DOI 10.1007/s00500-016-2306-8.
- [2] T. Traczyk and W. Zarębski, Convex congruences on BCK-algebras. Demonstratio Math. **18** (1985), 319-323.

Chajda, Länger Convex congruencs 20 / 21

Thank you for your attention!