
Monomial
Clones

Introduction
Clone

Introducing a field

Finite Field

Monomial
Clones on E3
Monomial Clones on
E2

Monomial Clones on
E3

Monomials
x s y t

Monomials x s

Monomials x s y t

One is weak; Two is
strong

Two is strong

One is weak

Monomial Clones

Hajime Machida

Tokyo, Japan

SSAOS 2016

Trojanovice, Czech Republic

September 3 4 5 6 7 8 9 2016

Joint work with J. Pantović (Novi Sad)
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What is a clone?

For k > 1 let Ek = {0,1, . . . , k − 1}

f (x1, . . . , xn) : n - variable function on Ek
i.e., f : (Ek )

n −→ Ek

O(n)
k : the set of n - variable functions on Ek

Ok =
∞⋃

n=1

O(n)
k

en
i (x1, . . . , xi , . . . , xn) = xi : (n-variable i-th) projection

Jk : the set of projections on Ek
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We define (functional) “composition” of functions
in a usual way.

Example of composition

Given f (x1, x2, x3) ∈ O
(3)
k and g(x1, x2) ∈ O

(2)
k ,

an example of composition of f and g is

f (g(x1, x2), x3, x4).
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Definition

C (⊆ Ok ) : clone on Ek

⇐⇒
(i) C ⊇ Jk

(ii) C is closed under composition

Lk : the set of all clones on Ek ,

“ lattice of clones ” on Ek

Lk contains
• the greatest element: Ok

• the least element: Jk
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Basic Facts on Clones

(1) For k = 2, L2 : countable
completely known (E. Post)

(2) For k ≥ 3, Lk : continuum
mostly unknown

(3) Maximal clones
For each k ≥ 2, completely known (I. Rosenberg)

(4) Minimal clones
For k = 2, completely known (E. Post)
For k = 3, completely known (B. Csákány)
For k = 4, ???
For k ≥ 5, very little is known
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Introducing the structure of a
field into Ek

We introduce the structure of a field into Ek .

For this purpose, it is required that
k = a prime power,

i.e., k = p e for a prime p and a positive integer e.

Then, consider Ek = {0,1, . . . , k} as the finite field GF (k).
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Polynomials over K

For arbitrary field K and a positive integer n, an (n-variable)
polynomial over K is an n-variable function∑

0≤i1, ..., in≤e

ai1,...,in x i1
1 · · · x

in
n

for some e ∈ N and ai1,...,in ∈ K .
In other words, a polynomial is a finite sum of terms.

Well-known: An n-variable function f (x1, . . . , xn) over K is
uniquely expressed as a polynomial.
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Quiz 1

Consider two functions f and g expressed as polynomials
on E2 (= {0,1}).

1 f (x , y) = x y + 1
2 g(x , y) = x y + x + y

Q1 : Which function is stronger with respect to the
‘productive power’ by (functional) composition ?

A : f is stronger.
In fact,

1 f (x , y) = NAND (x , y)
2 g(x , y) = OR (x , y)
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Quiz 1 (EASY)

Consider two functions f and g expressed as polynomials
on E2 (= {0,1}).

1 f (x , y) = x y + 1
2 g(x , y) = x y + x + y

Q1 : Which function is stronger with respect to the
‘productive power’ by (functional) composition ?

A : f is stronger.
In fact,
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Quiz 2

Consider three functions u, v and w expressed as
polynomials on E3 (= {0,1,2}).

1 u(x , y) = x2 y2 + x y2 + x2 y + 2xy + x + y
2 v(x , y) = x2 y2 + x y2 + x2 y + xy + x + y
3 w(x , y) = x2 y2 + x y2 + x2 y + 2xy + x + y + 1

Q2 : Which function is the weakest ?

A : u is the weakest. In fact,
(1) u(x , y) generates a minimal clone,
(2) w(x , y) is Webb function ( = max(x , y) + 1 ) which is

known to generate all functions on E3, and
(3) v(x , y) stays somewhere in-between.
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Quiz 2 (HARD)
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How to get a polynomial corresponding to a function:

GIVEN: f (x1, . . . , xn)

i.e., a mapping f : K n −→ K

To GET:
∑

0≤i1, ..., in≤e

ai1,...,in x i1
1 · · · x

in
n

METHOD: “ Lagrange interpolation formula ”
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Example

Suppose f (x , y , z) is a 3-variable function on E3 = {0,1,2}.
For a,b, c ∈ E3, define

t a b c(x , y , z) =
∏

a′∈E3\{a}

x − a′

a− a′
·

∏
b′∈E3\{b}

y − b′

b − b′
·

∏
c′∈E3\{c}

z − c′

c − c′

Then

t a b c(x , y , z) =

{
1 if x = a, y = b, z = c
0 otherwise

Hence

f (x , y , z) =
∑

(a,b,c)∈E 3
3

f (a,b, c) · t a b c(x , y , z)
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In General

For an n-variable function f (x1, . . . , xn) on Ek ,
we have

f (x1, . . . , xn) =
∑

(a1,...,an)∈E n
k

f (a1, . . . ,an) · t a1 ... an(x1, . . . , xn)

where

t a1 ... an(x1, . . . , xn) =
∏

1≤i≤n

 ∏
a′i∈Ek\{ai}

xi − a′i
ai − a′i


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Example Let f (x , y , z) be a function defined by

f (x , x , y) = f (x , y , x) = f (y , x , x) = x

and

f (x , y , z) = 0 if |{x , y , z}| = 3.

Then

f (x , y , z) =
(x − 1)(x − 2)
(0− 1)(0− 2)

· y(y − 2)
1 · (1− 2)

· z(z − 2)
1 · (1− 2)

+ · · ·

+ 2 · (x − 1)(x − 2)
(0− 1)(0− 2)

· y(y − 1)
2 · (2− 1)

· z(z − 1)
2 · (2− 1)

+ · · ·

(sum of 12 products)

= 2x2(y + z) + 2y2(z + x) + 2z2(x + y)
�
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Monomials over K
An (n-variable) monomial over K is an n-variable polynomial
consisting of one term, i.e.,

a x i1
1 · · · x

in
n

for a ∈ K and i1, . . . , in ∈ N.

〈〈 In the rest of my talk, we shall take a more restrictive view
of monomials. 〉〉

An (n-variable) monomial m over K is a monic monomial if
the coefficient of m is 1, i.e., if m is

x i1
1 · · · x

in
n

for i1, . . . , in ∈ N.
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In what follows, by a monomial we shall mean a monic
monomial, that is,

“ monomial = x i1
1 · · · x

in
n ”

A monomial clone is defined as follows.

Definition
A clone C over K is a monomial clone if C is generated by
some monomial m over K , i.e., C = 〈m〉.
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Finite Field

We review fundamental properties of finite fields.

Proposition

(1) For any prime power k , there exists a finite field K
whose cardinality is k . It is unique up to isomorphism,
and is denoted by GF (k).

(2) Over GF (k), it holds that xk = x for every x ∈ GF (k).

Hence, we have:

Corollary
Any n-variable monomial m over GF(k) is expressed as

m = x i1
1 · · · x in

n

for some i1, . . . , in with 0 < i1, . . . , in < k .



Monomial
Clones

Introduction
Clone

Introducing a field

Finite Field

Monomial
Clones on E3
Monomial Clones on
E2

Monomial Clones on
E3

Monomials
x s y t

Monomials x s

Monomials x s y t

One is weak; Two is
strong

Two is strong

One is weak

II Monomial Clones on E3
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To determine all monomial
clones on E3

In this section we determine all monomial clones on E3.

Before doing so, we describe monomial clones on E2.
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Monomial Clones on E2

Considering the fact that x2 = x holds on E2, it is immediate
to see that there exist only two monomial clones over E2.

They are:
(1) 〈x1〉
(2) 〈x1 x2〉

Notice that
(1) 〈x1〉 is the least clone J2, and
(2) 〈x1 x2〉 is the set of all monomials on E2.
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Now we study monomial clones on E3.

Since the equality x3 = x holds on E3, and GF(3) is
commutative, monomials that need to be considered are

x1 · · · xs x2
s+1 · · · x2

s+t

for s, t ≥ 0 and s + t > 0.
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s\ t 0 1 2 3
0 x2

1 x2
1x2

2 x2
1 x2

2 x2
3

1 x1 x1x2
2 x1x2

2 x2
3 x1x2

2 x2
3 x2

4

2 x1x2 x1x2x2
3 x1x2x2

3 x2
4 x1x2x2

3 x2
4 x2

5

3 x1x2x3 x1x2x3x2
4 x1x2x3x2

4 x2
5 x1x2x3x2

4 x2
5 x2

6

4 x1x2x3x4 x1x2x3x4x2
5 x1x2x3x4x2

5 x2
6 x1x2x3x4x2

5 x2
6 x2

7

5 x1x2x3x4x5 x1x2x3x4x5x2
6 x1x2x3x4x5x2

6 x2
7 x1x2x3x4x5x2

6 x2
7 x2

8

Table : Monomials on E3 (for small s and t)

x1 · · · xs x 2
s+1 · · · x 2

s+t (s, t ≥ 0, s + t > 0)
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t = 0

Lemma

(i) s ≥ 2 : even =⇒ 〈x1 · · · xs〉 = 〈x1x2〉
(ii) s ≥ 3 : odd =⇒ 〈x1 · · · xs〉 = 〈x1x2x3〉

Claim 1 (M-clones generated by a monomial with t = 0 )
(i) There are three monomial clones:

〈x1〉, 〈x1 x2〉 and 〈x1 x2 x3〉.

(ii) 〈x1〉 = the least clone J3
〈x1 x2〉 = the set of all monomials on E3

(iii) 〈x1〉 ⊂ 〈x1 x2 x3〉 ⊂ 〈x1 x2〉

(Note: ⊂ denotes the strict inclusion)
Proof (i) From Lemma. (ii) Trivial. (iii) The first inclusion is
clear. For the second inclusion, see the next page. �
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〈x1 x2〉 = the set of all monomials on E3

(iii) 〈x1〉 ⊂ 〈x1 x2 x3〉 ⊂ 〈x1 x2〉

(Note: ⊂ denotes the strict inclusion)

Proof (i) From Lemma. (ii) Trivial. (iii) The first inclusion is
clear. For the second inclusion, see the next page. �
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(ii) 〈x1〉 = the least clone J3
〈x1 x2〉 = the set of all monomials on E3

(iii) 〈x1〉 ⊂ 〈x1 x2 x3〉 ⊂ 〈x1 x2〉
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Proof (i) From Lemma. (ii) Trivial. (iii) The first inclusion is
clear. For the second inclusion, see the next page. �
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Proof of “〈x1 x2 x3〉 ⊂ 〈x1 x2〉” :

Let

ρ =

{(
1
2

)
,

(
2
2

)}

Then

x1x2x3 ∈ Pol ρ but x1x2 6∈ Pol ρ

Hence,

x1 x2 6∈ 〈x1 x2 x3〉
and

〈x1 x2 x3〉 6= 〈x1 x2〉 �
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s\ t 0 1 2 3
0 x2

1 x2
1x2

2 x2
1 x2

2 x2
3

1 x1 x1x2
2 x1x2

2 x2
3 x1x2

2 x2
3 x2

4

2 x1x2 x1x2x2
3 x1x2x2

3 x2
4 x1x2x2

3 x2
4 x2

5

3 x1x2x3 x1x2x3x2
4 x1x2x3x2

4 x2
5 x1x2x3x2

4 x2
5 x2

6

4 − x1x2x3x4x2
5 x1x2x3x4x2

5 x2
6 x1x2x3x4x2

5 x2
6 x2

7

5 − x1x2x3x4x5x2
6 x1x2x3x4x5x2

6 x2
7 x1x2x3x4x5x2

6 x2
7 x2

8

Table : Monomials on E3
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t > 0

Lemma
For t > 0 we have:

(i) s = 0 =⇒ 〈x2
1 x2

2 · · · x2
t+1〉 = 〈x2

1 x2
2 〉

(ii) s = 1 =⇒ 〈x1 x2
2 · · · x2

t+1〉 = 〈x1x2
2 〉

(iii) s ≥ 2 : even =⇒ 〈x1 · · · xs x2
s+1 · · · x2

s+t〉 = 〈x1x2〉
(iv) s ≥ 3 : odd =⇒ 〈x1 · · · xs x2

s+1 · · · x2
s+t〉 = 〈x1x2x3〉

Proof Easy from

x · x2 = x and x2 · x2 = x2. �

Claim 2 (M-clones generated by a monomial with t = 1 )
(i) There are two such clones 〈x2

1 〉 and 〈x1 x2
2 〉.

(ii) 〈x1〉 ⊂ 〈x2
1 〉 ⊂ 〈x1 x2〉

(iii) 〈x1〉 ⊂ 〈x1 x2
2 〉 ⊂ 〈x1 x2 x3〉
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Lemma
For t > 0 we have:

(i) s = 0 =⇒ 〈x2
1 x2

2 · · · x2
t+1〉 = 〈x2

1 x2
2 〉

(ii) s = 1 =⇒ 〈x1 x2
2 · · · x2

t+1〉 = 〈x1x2
2 〉

(iii) s ≥ 2 : even =⇒ 〈x1 · · · xs x2
s+1 · · · x2

s+t〉 = 〈x1x2〉
(iv) s ≥ 3 : odd =⇒ 〈x1 · · · xs x2

s+1 · · · x2
s+t〉 = 〈x1x2x3〉

Proof Easy from

x · x2 = x and x2 · x2 = x2. �

Claim 2 (M-clones generated by a monomial with t = 1 )
(i) There are two such clones 〈x2

1 〉 and 〈x1 x2
2 〉.

(ii) 〈x1〉 ⊂ 〈x2
1 〉 ⊂ 〈x1 x2〉

(iii) 〈x1〉 ⊂ 〈x1 x2
2 〉 ⊂ 〈x1 x2 x3〉
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s\ t 0 1 2 3
0 x2

1 x2
1x2

2 x2
1 x2

2 x2
3

1 x1 x1x2
2 x1x2

2 x2
3 x1x2

2 x2
3 x2

4

2 x1x2 − x1x2x2
3 x2

4 x1x2x2
3 x2

4 x2
5

3 x1x2x3 − x1x2x3x2
4 x2

5 x1x2x3x2
4 x2

5 x2
6

4 − − x1x2x3x4x2
5 x2

6 x1x2x3x4x2
5 x2

6 x2
7

5 − − x1x2x3x4x5x2
6 x2

7 x1x2x3x4x5x2
6 x2

7 x2
8

Table : Monomials on E3
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t > 0

Lemma
For t > 0 we have:

(i) s = 0 =⇒ 〈x2
1 x2

2 · · · x2
t+1〉 = 〈x2

1 x2
2 〉

(ii) s = 1 =⇒ 〈x1 x2
2 · · · x2

t+1〉 = 〈x1x2
2 〉

(iii) s ≥ 2 : even =⇒ 〈x1 · · · xs x2
s+1 · · · x2

s+t〉 = 〈x1x2〉
(iv) s ≥ 3 : odd =⇒ 〈x1 · · · xs x2

s+1 · · · x2
s+t〉 = 〈x1x2x3〉

Claim 3 (M-clones generated by a monomial with t = 2 )
(i) There is only one such clone 〈x2

1 x2
2 〉.

(ii) 〈x2
1 〉 ⊂ 〈x2

1 x2
2 〉 ⊂ 〈x1 x2〉
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s\ t 0 1 2 3
0 x2

1 x2
1x2

2 −
1 x1 x1x2

2 − −
2 x1x2 − − −
3 x1x2x3 − − −
4 − − − −
5 − − − −

Table : Monomials on E3

Hence, monomial clones over E3 are the following:

(1) 〈x1〉 (4) 〈x2
1 〉 (6) 〈x2

1 x2
2 〉

(2) 〈x1 x2〉 (5) 〈x1 x2
2 〉

(3) 〈x1 x2 x3〉
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For example, we show:

〈x2
1 x2

2 〉 and 〈x1 x2 x3〉 are incomparable.

Proof

(a) 〈x2
1 x2

2 〉 6⊂ 〈x1 x2 x3〉

Let

ρ =

{(
2
2

)}

Then

x1x2x3 ∈ Pol ρ but x2
1 x2

2 6∈ Pol ρ

Hence,

x2
1 x2

2 6∈ 〈x1 x2 x3〉
and

〈x2
1 x2

2 〉 6⊂ 〈x1 x2 x3〉 .
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(b) 〈x1 x2 x3〉 6⊂ 〈x2
1 x2

2 〉

Let

τ =

{(
1
1

)
,

(
1
2

)
,

(
2
1

)}

Then

x2
1 x2

2 ∈ Pol τ but x1x2x3 6∈ Pol τ

Hence,

x1 x2 x3 6∈ 〈x2
1 x2

2 〉
and

〈x1 x2 x3〉 6⊂ 〈x2
1 x2

2 〉 .

From (a) and (b) we see that 〈x2
1 x2

2 〉 and 〈x1 x2 x3〉 are
incomparable. �
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Summary
(a1) 〈x1〉 ⊂ 〈x1 x2

2 〉 ⊂ 〈x1 x2 x3〉 ⊂ 〈x1 x2〉

(a2) 〈x1〉 ⊂ 〈x2
1 〉 ⊂ 〈x2

1 x2
2 〉 ⊂ 〈x1 x2〉

(b1) 〈x2
1 〉 6⊂ 〈x1 x2

2 〉, 〈x1 x2
2 〉 6⊂ 〈x2

1 〉

(b2) 〈x2
1 〉 6⊂ 〈x1 x2 x3〉, 〈x1 x2 x3〉 6⊂ 〈x2

1 〉

(b3) 〈x2
1 x2

2 〉 6⊂ 〈x1 x2
2 〉, 〈x1 x2

2 〉 6⊂ 〈x2
1 x2

2 〉

(b4) 〈x2
1 x2

2 〉 6⊂ 〈x1 x2 x3〉, 〈x1 x2 x3〉 6⊂ 〈x2
1 x2

2 〉
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Case: k = 3

�
�

�
�〈 x1 〉

HH
H

HH

��
��
�

�
�

�
�〈 x2

1 〉
�
�

�
�〈 x1 x2

2 〉

�
�

�
�〈 x2

1 x2
2 〉

�
�

�
�〈 x1x2x3 〉

�
�

�
�〈 x1x2 〉

�
����

H
HHHH

Note: 〈 x1x2 〉 = the set of all monomials on E3

〈 x1 〉 = J3
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III Monomials x sy t
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In this section we investigate monomial clones on Ek which
are generated by unary functions ( 1-variable functions ) and
binary functions ( 2-variable functions ).

We put emphasis on monomials which generate minimal
clones in the lattice Lk of clones.
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LetMk be the set of monomial clones on Ek .

Remark

For any C ∈Mk ,

C is minimal inMk =⇒ C is minimal in Lk

(i.e., C is a minimal clone)

Hence, we want to find:

monomial clones which are minimal inMk .

(= a motivation for the later study of 2-variable monomials)
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Remark

For any C ∈Mk ,
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(i.e., C is a minimal clone)

Hence, we want to find:

monomial clones which are minimal inMk .

(= a motivation for the later study of 2-variable monomials)
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Monomials x s

As for unary functions generating minimal clones, the next
fact is well-known.

Fact: A unary function f ∈ O(1)
k generates a minimal clone

if and only if
(1) f is a permutation of prime order, or
(2) f is not a permutation and satisfies f ◦ f = f .
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Now, when is a unary monomial xs a permutation?
A (trivial) answer is:

Lemma
For a prime-power k > 1 and 0 < s < k , the following are
equivalent.

(1) xs is a permutation on Ek

(2) si ≡ 1 (mod k − 1) for some i > 1
(3) s and k − 1 are co-prime, i.e., (s, k − 1) = 1.

(Remark: Due to Fermat-Euler Theorem)
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Example: Unary minimal monomials for k = 3,5,7,11,13

(1) k = 3 : 〈x2〉 is minimal.

(2) k = 5 : 〈xs〉 is minimal for s = 3,4.
〈x4〉 ⊂ 〈x2〉

(3) k = 7 : 〈xs〉 is minimal for s = 3,4,5,6.
〈x4〉 ⊂ 〈x2〉

(4) k = 11 : 〈xs〉 is minimal for s = 5,6,9.
〈x6〉 ⊂ 〈x4〉 ⊂ 〈x2〉 = 〈x8〉
〈x9〉 ⊂ 〈x3〉 = 〈x7〉

(5) k = 13 : 〈xs〉 is minimal for s = 4,5,6,7,9,11
〈x4〉 ⊂ 〈x8〉 ⊂ 〈x2〉; 〈x4〉 ⊂ 〈x10〉
〈x9〉 ⊂ 〈x3〉
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Now, we consider 2-variable monomials xs y t and clones
generated by them. (For convenience we use x and y ,
instead of x1 and x2, for the variable symbols.)

More precisely, we consider

xs y t for 0 < s, t < k

with the additional condition

s + t = k .
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Note 1: If m is a monomial which generates a non-unary
minimal clone then
(1) m must be a 2-variable monomial xs y t

and,
(2) since 〈xs y t〉 does not contain any non-trivial unary
functions, the condition s + t = k must be satisfied.

Note 2: For u, v ∈ N with 0 < u, v < k ,

xu yv ∈ 〈xs y t〉 =⇒ u + v = k

i.e., this condition on the exponents is preserved by
composition.
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Case: k = 5, 7, 11

k = 5

�
�

�
�〈 x y4 〉

�
�

�
�〈 x2 y3 〉

k = 7

�
�

�
�〈 x y6 〉

�
�

�
�〈 x3 y4 〉

�
�

�
�〈 x2 y5 〉

k = 11

�
�

�
�〈 x y10 〉

�
�

�
�〈 x5 y6 〉

�
�

�
�〈 x2 y9 〉 = 〈 x3 y8 〉

= 〈 x4 y7 〉
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Case: k = 13

k = 13
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�
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�〈 x y12 〉
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�
�

�
�〈 x4 y9 〉

�
�

�
�〈 x6 y7 〉

�
�

�
�〈 x5 y8 〉

�
�

�
�〈 x3 y10 〉

�
�

�
�〈 x2 y11 〉

��
���

HH
HHH

��
��

�
��
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Now, what observation do you get from these results ?

My observation is:

One is weak, and two is strong !
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Lemma
Let k be a prime power. For clones on GF(k) we have the
following.

(1) 〈x yk−1〉 ⊆ 〈x2 yk−2〉
(2) 〈x4 yk−4〉 ⊆ 〈x3 yk−3〉

Proof (i) Since

(k − 2)2 = ((k − 1)− 1)2

= (k − 1)2 − 2(k − 1) + 1 ≡ 1 (mod k − 1)

we have x2(x2yk−2)k−2 = xk−1y .
(ii) Similarly,

(k − 3)2 = ((k − 1)− 2)2

= (k − 1)2 − 4(k − 1) + 4 ≡ 4 (mod k − 1)

implies x3(x3yk−3)k−3 = xk−4y4. �
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Proposition
For any prime power k > 1 and any 0 < s < k , it holds

〈xsyk−s〉 ⊆ 〈x2yk−2〉.

on GF(k).

Proof Proof by induction.

Basis: y2(y2xk−2)k−2 = x (k−2)2
y2k−2 = xyk−1

Inductive Step:
(xsyk−s)2xk−2 = x2s+k−2y2k−2s = x2s−1yk−2s+1

(xsyk−s)2yk−2 = x2sy3k−2s−2 = x2syk−2s �
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Lemma
〈 xyk−1 〉 is minimal inMk .

Proof For any monomial m in 〈 xyk−1 〉 \ Jk , it is easy to
verify that xyk−1 ∈ 〈m 〉. �
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Question: Is 〈 xyk−1 〉 uniquely minimal inMk ?

Conjecture: YES,

that is:

For any prime power k > 1 and any 0 < s < k , it holds that

〈xyk−1〉 ⊆ 〈xsyk−s〉,

in other words,
xyk−1 ∈ 〈xsyk−s〉 .
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Partial results concerning the conjecture

Lemma
Let k = 2m + 1. Then

xyk−1 ∈ 〈xmyk−m〉

Proof Note that k − 1 = 2m.

(xmym+1)m(ymxm+1)m+1 = xm2+(m+1)2
y2m(m+1)

= xy2m = xyk−1

�
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Lemma
For k > 2 and 1 < a < k , if there exists e > 1 satisfying

(i) ae ≡ 1 (mod k − 1)
or

(ii) ae ≡ a (mod k − 1)

then xyk−1 ∈ 〈xayk−a〉 .

Proof (i) By repeating substitution of xayk−a into x e times,
we obtain:

((· · · ((xayk−a)ayk−a)a · · · )ayk−a)ayk−a

= xae
y∗

= xyk−1

(ii) Similarly, we have:

((· · · ((xayk−a)ayk−a)a · · · )ayk−a)axk−a

= xae+(k−a)y∗

= xa+(k−a)y∗ = xkyk−1 = xyk−1

�
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In most cases, the following property holds for 1 < a < k .

(∃e > 1) a e ≡ a (mod k − 1)

Example ( k = 11) Table of ae (mod 10)

a \ e 1 2 3 4 5 · · ·
2 2 4 8 6 2 · · ·
9 9 1 9 · · ·
3 3 9 7 1 3 · · ·
8 8 4 2 6 8 · · ·
4 4 6 4 · · ·
7 7 9 3 1 7 · · ·
5 5 5 · · ·
6 6 6 · · ·



Monomial
Clones

Introduction
Clone

Introducing a field

Finite Field

Monomial
Clones on E3
Monomial Clones on
E2

Monomial Clones on
E3

Monomials
x s y t

Monomials x s

Monomials x s y t

One is weak; Two is
strong

Two is strong

One is weak

In most cases, the following property holds for 1 < a < k .

(∃e > 1) a e ≡ a (mod k − 1)

Example ( k = 11) Table of ae (mod 10)

a \ e 1 2 3 4 5 · · ·
2 2 4 8 6 2 · · ·
9 9 1 9 · · ·
3 3 9 7 1 3 · · ·
8 8 4 2 6 8 · · ·
4 4 6 4 · · ·
7 7 9 3 1 7 · · ·
5 5 5 · · ·
6 6 6 · · ·



Monomial
Clones

Introduction
Clone

Introducing a field

Finite Field

Monomial
Clones on E3
Monomial Clones on
E2

Monomial Clones on
E3

Monomials
x s y t

Monomials x s

Monomials x s y t

One is weak; Two is
strong

Two is strong

One is weak

Counter-example ( k = 37) Table of ae (mod 36)

a \ e 1 2 3 4 5 6 7 8
2 2 4 8 16 32 28 20 4

35 35 1 35 · · ·
3 3 9 27 9 · · ·

34 34 4 28 16 4 · · ·
4 4 16 28 4 · · ·

33 33 9 10 9 · · ·

However, even in this case, x y36 ∈ 〈x3y34〉 holds

because

32 + 343 ≡ 9 + 28 ≡ 1 (mod 36)

and
(x3y34)3 (y3(y3x34)34)34 = x y36
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Lemma
Let k > 2 be a prime and a be a positive integer. If a and
k − 1 are coprime, i.e., GCD(a, k − 1) = 1 then

xyk−1 ∈ 〈xayk−a〉

Proof If there exists e > 0 such that ae ≡ 1 (mod k − 1)
then the result follows from (i) of the preceding Lemma.
Otherwise, there exist d ,e such that 1 < d < e satisfying
ad ≡ ae (mod k − 1). Then we have

ad(ae−d − 1) ≡ 0 (mod k − 1).

Since GCD(a, k − 1) = 1, it follows that

ae−d ≡ 1 (mod k − 1),

which implies
xae−d

yk−ae−d
= xyk−1

and the conclusion follows. �
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One more property, which may be of interest:
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Lemma
Let k be an odd prime power and suppose that

k = 2m + 1
(
⇔ m =

k − 1
2

)
for m ≥ 3. Then, for every s ∈ {2, . . . ,m − 1}, we have

xsyk−s 6∈ 〈xmyk−m〉

on GF(k).
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Proof Note that k − 1 = 2m. We can show below that all of
m2, (m + 1)2 and m(m + 1) are equivalent to one of 0, 1, m
and m + 1 mod k − 1. Here the equivalence (≡) is taken for
mod k − 1.

m2 =

{
m(m − 1) + m ≡ m if m : odd
m ·m ≡ 0 if m : even

(m + 1)2 = m2 + 2m + 1 ≡ m2 + 1

≡
{

m + 1 if m : odd
1 if m : even

m(m + 1) ≡
{

0 if m : odd
m2 + m = m if m : even

Hence, among xsyk−s for s ∈ {1, . . . ,m}, the terms that can
be produced from xmyk−m by composition are only xyk−1

and xmyk−m. �
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Thank you

for your attention !
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